ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10388
  4. Cited By
Model Selection in Bayesian Neural Networks via Horseshoe Priors

Model Selection in Bayesian Neural Networks via Horseshoe Priors

29 May 2017
S. Ghosh
Finale Doshi-Velez
    BDL
ArXivPDFHTML

Papers citing "Model Selection in Bayesian Neural Networks via Horseshoe Priors"

25 / 25 papers shown
Title
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Posterior and variational inference for deep neural networks with heavy-tailed weights
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
60
4
0
05 Jun 2024
FineMorphs: Affine-diffeomorphic sequences for regression
FineMorphs: Affine-diffeomorphic sequences for regression
Michele Lohr
L. Younes
29
0
0
26 May 2023
Masked Bayesian Neural Networks : Theoretical Guarantee and its
  Posterior Inference
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Gyuseung Baek
Yongdai Kim
BDL
34
4
0
24 May 2023
Interpretable (not just posthoc-explainable) heterogeneous survivor
  bias-corrected treatment effects for assignment of postdischarge
  interventions to prevent readmissions
Interpretable (not just posthoc-explainable) heterogeneous survivor bias-corrected treatment effects for assignment of postdischarge interventions to prevent readmissions
Hongjing Xia
Joshua C. Chang
S. Nowak
Sonya Mahajan
R. Mahajan
Ted L. Chang
Carson C. Chow
38
1
0
19 Apr 2023
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
Maohao Shen
Yuheng Bu
P. Sattigeri
S. Ghosh
Subhro Das
G. Wornell
UQCV
OOD
BDL
15
31
0
14 Dec 2022
Efficient variational approximations for state space models
Efficient variational approximations for state space models
Rubén Loaiza-Maya
D. Nibbering
11
1
0
20 Oct 2022
Variational Inference for Infinitely Deep Neural Networks
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
27
11
0
21 Sep 2022
Interpretable (not just posthoc-explainable) medical claims modeling for
  discharge placement to prevent avoidable all-cause readmissions or death
Interpretable (not just posthoc-explainable) medical claims modeling for discharge placement to prevent avoidable all-cause readmissions or death
Joshua C. Chang
Ted L. Chang
Carson C. Chow
R. Mahajan
Sonya Mahajan
Joe Maisog
Shashaank Vattikuti
Hongjing Xia
FAtt
OOD
37
0
0
28 Aug 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
  Inference in Sparsity-Aware Modeling
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
68
75
0
28 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture
  limit, heavy tails, sparsity and compressibility
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
48
10
0
17 May 2022
Encoding Domain Knowledge in Multi-view Latent Variable Models: A
  Bayesian Approach with Structured Sparsity
Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity
Arber Qoku
Florian Buettner
29
5
0
13 Apr 2022
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in
  Bayesian Deep Neural Networks
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks
Jurijs Nazarovs
Ronak R. Mehta
Vishnu Suresh Lokhande
Vikas Singh
UQCV
BDL
OOD
22
5
0
19 Feb 2022
Identifiable Deep Generative Models via Sparse Decoding
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
31
45
0
20 Oct 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
61
1,111
0
07 Jul 2021
Consistent Sparse Deep Learning: Theory and Computation
Consistent Sparse Deep Learning: Theory and Computation
Y. Sun
Qifan Song
F. Liang
BDL
45
27
0
25 Feb 2021
Model Fusion with Kullback--Leibler Divergence
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedML
MoMe
26
33
0
13 Jul 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
43
100
0
15 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in
  Intensive Care
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
H. Overweg
Anna-Lena Popkes
A. Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
36
24
0
07 May 2019
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
17
77
0
13 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Posterior Concentration for Sparse Deep Learning
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
30
88
0
24 Mar 2018
Interpretable VAEs for nonlinear group factor analysis
Interpretable VAEs for nonlinear group factor analysis
Samuel K. Ainsworth
N. Foti
Adrian K. C. Lee
E. Fox
OOD
DRL
21
19
0
17 Feb 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1