Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.11140
Cited By
Variational Sequential Monte Carlo
31 May 2017
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Sequential Monte Carlo"
50 / 141 papers shown
Title
Trust-Region Twisted Policy Improvement
Joery A. de Vries
Jinke He
Yaniv Oren
M. Spaan
OffRL
LRM
37
0
0
08 Apr 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
53
0
0
01 Mar 2025
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Hanming Yang
A. Moretti
Sebastian Macaluso
Philippe Chlenski
C. A. Naesseth
I. Pe’er
BDL
47
1
0
03 Jan 2025
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Benjamin Cox
Santiago Segarra
Victor Elvira
81
0
0
23 Nov 2024
Recursive Learning of Asymptotic Variational Objectives
Alessandro Mastrototaro
Mathias Müller
Jimmy Olsson
28
0
0
04 Nov 2024
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Ayesha Vermani
Josue Nassar
Hyungju Jeon
Matthew Dowling
Il Memming Park
41
1
0
07 Oct 2024
Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm
Eli Sennesh
Hao Wu
Tommaso Salvatori
40
0
0
11 Aug 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
43
7
0
24 Jun 2024
Probabilistic Programming with Programmable Variational Inference
McCoy R. Becker
Alexander K. Lew
Xiaoyan Wang
Matin Ghavami
Mathieu Huot
Martin Rinard
Vikash K. Mansinghka
59
3
0
22 Jun 2024
KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty
P. Becker
Niklas Freymuth
Gerhard Neumann
Mamba
26
2
0
21 Jun 2024
Regime Learning for Differentiable Particle Filters
John-Joseph Brady
Yuhui Luo
Wenwu Wang
Victor Elvira
Yunpeng Li
33
0
0
08 May 2024
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
28
1
0
02 May 2024
Multi-AGV Path Planning Method via Reinforcement Learning and Particle Filters
Shao Shuo
34
1
0
27 Mar 2024
Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference
Declan McNamara
J. Loper
Jeffrey Regier
BDL
48
2
0
15 Mar 2024
Differentiable Particle Filtering using Optimal Placement Resampling
Domonkos Csuzdi
Olivér Törő
Tamás Bécsi
37
0
0
26 Feb 2024
Bayesian Multi-Task Transfer Learning for Soft Prompt Tuning
Haeju Lee
Minchan Jeong
SeYoung Yun
Kee-Eung Kim
AAML
VPVLM
53
3
0
13 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
35
2
0
19 Jan 2024
Online Variational Sequential Monte Carlo
Alessandro Mastrototaro
Jimmy Olsson
BDL
OffRL
35
3
0
19 Dec 2023
Learning Differentiable Particle Filter on the Fly
Jiaxi Li
Xiongjie Chen
Yunpeng Li
36
1
0
10 Dec 2023
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schon
Jens Sjölund
40
0
0
30 Oct 2023
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
43
1
0
26 Oct 2023
Variational autoencoder with weighted samples for high-dimensional non-parametric adaptive importance sampling
J. Demange-Chryst
François Bachoc
Jérome Morio
Timothé Krauth
32
2
0
13 Oct 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
NAS-X: Neural Adaptive Smoothing via Twisting
Dieterich Lawson
Michael Y. Li
Scott W. Linderman
20
1
0
28 Aug 2023
Ensemble Kalman Filters with Resampling
Omar Al Ghattas
Jiajun Bao
D. Sanz-Alonso
24
6
0
17 Aug 2023
Last layer state space model for representation learning and uncertainty quantification
Max H. Cohen
M. Charbit
Sylvain Le Corff
UQCV
BDL
30
1
0
04 Jul 2023
Adaptive Annealed Importance Sampling with Constant Rate Progress
Shirin Goshtasbpour
Victor Cohen
Fernando Perez-Cruz
32
7
0
27 Jun 2023
Score-based Data Assimilation
François Rozet
Gilles Louppe
48
32
0
18 Jun 2023
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
24
2
0
18 May 2023
Variational Nonlinear Kalman Filtering with Unknown Process Noise Covariance
Hua Lan
Jinjie Hu
Zengfu Wang
Q. Cheng
21
10
0
06 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
38
6
0
02 May 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
39
3
0
27 Apr 2023
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
33
14
0
19 Feb 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
41
8
0
27 Jan 2023
Statistical Distance Based Deterministic Offspring Selection in SMC Methods
Oskar Kviman
Hazal Koptagel
Harald Melin
J. Lagergren
22
0
0
23 Dec 2022
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
51
2
0
14 Dec 2022
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
24
10
0
26 Oct 2022
Efficient variational approximations for state space models
Rubén Loaiza-Maya
D. Nibbering
11
1
0
20 Oct 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
Christopher Hawthorne
AI4TS
16
1
0
08 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
37
1
0
27 Sep 2022
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
21
15
0
13 Jun 2022
Factored Conditional Filtering: Tracking States and Estimating Parameters in High-Dimensional Spaces
Dawei Chen
Samuel Yang-Zhao
John Lloyd
K. S. Ng
AI4TS
4
1
0
05 Jun 2022
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Alexander K. Lew
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
24
10
0
05 Mar 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
39
6
0
04 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
42
46
0
31 Jan 2022
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
29
4
0
26 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
1
2
3
Next