Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.11140
Cited By
Variational Sequential Monte Carlo
31 May 2017
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Sequential Monte Carlo"
41 / 141 papers shown
Title
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
26
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
26
123
0
23 Jun 2019
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLM
DRL
14
17
0
13 Jun 2019
Coupled Variational Recurrent Collaborative Filtering
Qingquan Song
Shiyu Chang
Xia Hu
BDL
6
9
0
11 Jun 2019
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
14
82
0
30 May 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
24
94
0
17 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
19
60
0
10 May 2019
Importance Weighted Hierarchical Variational Inference
Artem Sobolev
Dmitry Vetrov
BDL
16
26
0
08 May 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
26
95
0
12 Mar 2019
Quasi-Bayes properties of a recursive procedure for mixtures
S. Fortini
Sonia Petrone
14
2
0
27 Feb 2019
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
22
9
0
02 Feb 2019
Stochastic Gradient MCMC for Nonlinear State Space Models
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
28
7
0
29 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
29
2
0
03 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
Black-Box Autoregressive Density Estimation for State-Space Models
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
BDL
19
6
0
20 Nov 2018
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
15
7
0
27 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
19
110
0
09 Oct 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
30
196
0
27 Sep 2018
Bayesian dynamic variable selection in high dimensions
Gary Koop
Dimitris Korobilis
16
38
0
09 Sep 2018
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
17
107
0
27 Aug 2018
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
24
52
0
06 Aug 2018
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
19
26
0
05 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
27
13
0
22 Jun 2018
Deep State Space Models for Unconditional Word Generation
Florian Schmidt
Thomas Hofmann
25
14
0
12 Jun 2018
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank Wood
Shimon Whiteson
BDL
OffRL
21
259
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
27
117
0
23 May 2018
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
26
32
0
05 Apr 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
34
197
0
13 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
State Space LSTM Models with Particle MCMC Inference
Xun Zheng
Manzil Zaheer
Amr Ahmed
Yali Wang
Eric Xing
Alex Smola
BDL
30
46
0
30 Nov 2017
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
23
131
0
18 Sep 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
26
151
0
29 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco F. Cusumano-Towner
Vikash K. Mansinghka
22
17
0
19 May 2017
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
19
94
0
10 Apr 2017
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
87
60
0
24 Feb 2014
Previous
1
2
3