Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1705.11140
Cited By
v1
v2 (latest)
Variational Sequential Monte Carlo
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
31 May 2017
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Sequential Monte Carlo"
47 / 147 papers shown
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Neural Information Processing Systems (NeurIPS), 2019
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
298
32
0
31 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
180
11
0
11 Oct 2019
DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs
International Joint Conference on Artificial Intelligence (IJCAI), 2019
Yunbo Wang
Bo Liu
Jiajun Wu
Yuke Zhu
Simon S. Du
Fei-Fei Li
Joshua B. Tenenbaum
160
7
0
28 Sep 2019
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
151
10
0
20 Sep 2019
On importance-weighted autoencoders
Axel Finke
Alexandre Hoang Thiery
180
2
0
24 Jul 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
AAAI Conference on Artificial Intelligence (AAAI), 2019
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
165
11
0
12 Jul 2019
The Thermodynamic Variational Objective
Neural Information Processing Systems (NeurIPS), 2019
Vaden Masrani
T. Le
Frank Wood
695
50
0
28 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Neural Information Processing Systems (NeurIPS), 2019
Justin Domke
Daniel Sheldon
303
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
193
130
0
23 Jun 2019
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLM
DRL
168
17
0
13 Jun 2019
Coupled Variational Recurrent Collaborative Filtering
Knowledge Discovery and Data Mining (KDD), 2019
Qingquan Song
Shiyu Chang
Helen Zhou
BDL
162
9
0
11 Jun 2019
Streaming Variational Monte Carlo
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
503
21
0
04 Jun 2019
Particle Filter Recurrent Neural Networks
AAAI Conference on Artificial Intelligence (AAAI), 2019
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
289
90
0
30 May 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
International Conference on Machine Learning (ICML), 2019
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
209
110
0
17 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
International Conference on Machine Learning (ICML), 2019
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
225
61
0
10 May 2019
Importance Weighted Hierarchical Variational Inference
Neural Information Processing Systems (NeurIPS), 2019
Artem Sobolev
Dmitry Vetrov
BDL
157
31
0
08 May 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
221
106
0
12 Mar 2019
Quasi-Bayes properties of a recursive procedure for mixtures
S. Fortini
Sonia Petrone
82
3
0
27 Feb 2019
Particle Flow Bayes' Rule
International Conference on Machine Learning (ICML), 2019
Xinshi Chen
H. Dai
Le Song
276
10
0
02 Feb 2019
Stochastic Gradient MCMC for Nonlinear State Space Models
Bayesian Analysis (BA), 2019
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
356
8
0
29 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
143
2
0
03 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
270
45
0
17 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
141
48
0
06 Dec 2018
Black-Box Autoregressive Density Estimation for State-Space Models
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
BDL
166
6
0
20 Nov 2018
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
192
35
0
13 Nov 2018
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
267
7
0
27 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
227
111
0
09 Oct 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
285
217
0
27 Sep 2018
Bayesian dynamic variable selection in high dimensions
Gary Koop
Dimitris Korobilis
164
47
0
09 Sep 2018
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
248
110
0
27 Aug 2018
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
377
59
0
06 Aug 2018
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), 2018
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
204
27
0
05 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
251
14
0
22 Jun 2018
Deep State Space Models for Unconditional Word Generation
Florian Schmidt
Thomas Hofmann
146
16
0
12 Jun 2018
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank Wood
Shimon Whiteson
BDL
OffRL
321
284
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
322
36
0
01 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
219
11
0
23 May 2018
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
248
139
0
23 May 2018
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
197
35
0
05 Apr 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
446
205
0
13 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
199
52
0
01 Dec 2017
State Space LSTM Models with Particle MCMC Inference
Xun Zheng
Manzil Zaheer
Amr Ahmed
Longji Xu
Eric Xing
Alex Smola
BDL
119
47
0
30 Nov 2017
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
365
147
0
18 Sep 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
480
159
0
29 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
469
219
0
25 May 2017
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco F. Cusumano-Towner
Vikash K. Mansinghka
284
20
0
19 May 2017
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
194
95
0
10 Apr 2017
Previous
1
2
3