Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.01350
Cited By
Emergence of Invariance and Disentanglement in Deep Representations
5 June 2017
Alessandro Achille
Stefano Soatto
OOD
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Emergence of Invariance and Disentanglement in Deep Representations"
43 / 93 papers shown
Title
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
59
0
12 Nov 2020
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman
Alessandro Achille
Daksh Idnani
J. Kao
24
13
0
06 Oct 2020
Domain-invariant Similarity Activation Map Contrastive Learning for Retrieval-based Long-term Visual Localization
Hanjiang Hu
Hesheng Wang
Zhe Liu
Weidong Chen
27
27
0
16 Sep 2020
DualDE: Dually Distilling Knowledge Graph Embedding for Faster and Cheaper Reasoning
Yushan Zhu
Wen Zhang
Mingyang Chen
Hui Chen
Xu-Xin Cheng
Wei Zhang
Huajun Chen Zhejiang University
14
27
0
13 Sep 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
31
65
0
04 Aug 2020
Beyond
H
\mathcal{H}
H
-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
38
22
0
30 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
19
23
0
22 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
11
18
0
29 Jun 2020
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
On the Maximum Mutual Information Capacity of Neural Architectures
Brandon Foggo
Nan Yu
TPM
21
3
0
10 Jun 2020
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
27
65
0
16 May 2020
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GAN
DRL
40
259
0
09 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Z. Tu
DRL
CoGe
23
106
0
02 Apr 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
19
16
0
27 Mar 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
26
50
0
21 Mar 2020
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
11
0
0
07 Mar 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
Unsupervised Representation Disentanglement using Cross Domain Features and Adversarial Learning in Variational Autoencoder based Voice Conversion
Wen-Chin Huang
Hao Luo
Hsin-Te Hwang
Chen-Chou Lo
Yu-Huai Peng
Yu Tsao
Hsin-Min Wang
DRL
9
42
0
22 Jan 2020
Learning credit assignment
Chan Li
Haiping Huang
10
7
0
10 Jan 2020
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
19
21
0
20 Nov 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
111
25
0
05 Sep 2019
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations
J. Livezey
Ahyeon Hwang
Jacob Yeung
K. Bouchard
28
0
0
23 May 2019
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
17
12
0
19 May 2019
Task2Vec: Task Embedding for Meta-Learning
Alessandro Achille
Michael Lam
Rahul Tewari
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Stefano Soatto
Pietro Perona
SSL
17
309
0
10 Feb 2019
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
20
166
0
01 Nov 2018
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
David Barrett
Ari S. Morcos
Jakob H. Macke
AI4CE
13
110
0
31 Oct 2018
Interpretable Neuron Structuring with Graph Spectral Regularization
Alexander Tong
David van Dijk
Jay S. Stanley
Matthew Amodio
Kristina M. Yim
R. Muhle
J. Noonan
Guy Wolf
Smita Krishnaswamy
19
6
0
30 Sep 2018
Distributed Variational Representation Learning
Iñaki Estella Aguerri
A. Zaidi
15
71
0
11 Jul 2018
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry
X. Xing
Ruiqi Gao
Tian Han
Song-Chun Zhu
Ying Nian Wu
DRL
19
28
0
16 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
16
61
0
04 Jun 2018
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
31
78
0
17 May 2018
SHADE: Information Based Regularization for Deep Learning
Michael Blot
Thomas Robert
Nicolas Thome
Matthieu Cord
26
12
0
29 Apr 2018
Factorised spatial representation learning: application in semi-supervised myocardial segmentation
A. Chartsias
T. Joyce
G. Papanastasiou
S. Semple
M. Williams
D. Newby
R. Dharmakumar
Sotirios A. Tsaftaris
DRL
51
69
0
19 Mar 2018
Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle
Rana Ali Amjad
Bernhard C. Geiger
32
195
0
27 Feb 2018
A Walk with SGD
Chen Xing
Devansh Arpit
Christos Tsirigotis
Yoshua Bengio
19
118
0
24 Feb 2018
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
30
331
0
20 Feb 2018
The Role of Information Complexity and Randomization in Representation Learning
Matías Vera
Pablo Piantanida
L. Rey Vega
37
14
0
14 Feb 2018
MINE: Mutual Information Neural Estimation
Mohamed Ishmael Belghazi
A. Baratin
Sai Rajeswar
Sherjil Ozair
Yoshua Bengio
Aaron Courville
R. Devon Hjelm
DRL
18
1,248
0
12 Jan 2018
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
A. Baratin
Yoshua Bengio
Simon Lacoste-Julien
AAML
30
9
0
12 Jan 2018
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
36
80
0
01 Nov 2017
Previous
1
2