ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.01825
  4. Cited By
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space

Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space

6 June 2017
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
ArXivPDFHTML

Papers citing "Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space"

28 / 28 papers shown
Title
Distributed Thompson sampling under constrained communication
Distributed Thompson sampling under constrained communication
Saba Zerefa
Zhaolin Ren
Haitong Ma
Na Li
28
1
0
03 Jan 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
95
2
0
29 Oct 2024
Batched Bayesian optimization by maximizing the probability of including the optimum
Batched Bayesian optimization by maximizing the probability of including the optimum
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
42
0
0
08 Oct 2024
TS-RSR: A provably efficient approach for batch bayesian optimization
TS-RSR: A provably efficient approach for batch bayesian optimization
Zhaolin Ren
Na Li
29
2
0
07 Mar 2024
Parallel Hyperparameter Optimization Of Spiking Neural Network
Parallel Hyperparameter Optimization Of Spiking Neural Network
Thomas Firmin
Pierre Boulet
El-Ghazali Talbi
30
3
0
01 Mar 2024
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in
  Nested Subspaces
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
11
36
0
22 Apr 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
25
24
0
24 Jan 2023
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
197
0
07 Jun 2022
Putting Density Functional Theory to the Test in
  Machine-Learning-Accelerated Materials Discovery
Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery
Chenru Duan
F. Liu
Aditya Nandy
Heather J. Kulik
AI4CE
16
34
0
06 May 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
A. Hengel
38
13
0
04 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
N. Maus
Haydn Jones
Juston Moore
Matt J. Kusner
John Bradshaw
J. Gardner
BDL
49
69
0
28 Jan 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
30
100
0
11 Jan 2022
Representations and Strategies for Transferable Machine Learning Models
  in Chemical Discovery
Representations and Strategies for Transferable Machine Learning Models in Chemical Discovery
Daniel R Harper
Aditya Nandy
N. Arunachalam
Chenru Duan
J. Janet
Heather J. Kulik
6
8
0
20 Jun 2021
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
11
288
0
20 Apr 2021
Accelerating high-throughput virtual screening through molecular
  pool-based active learning
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
76
142
0
13 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
13
57
0
08 Nov 2020
Asynchronous ε-Greedy Bayesian Optimisation
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
18
5
0
15 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
13
43
0
19 Jun 2020
Using Bayesian Optimization to Accelerate Virtual Screening for the
  Discovery of Therapeutics Appropriate for Repurposing for COVID-19
Using Bayesian Optimization to Accelerate Virtual Screening for the Discovery of Therapeutics Appropriate for Repurposing for COVID-19
Edward O. Pyzer-Knapp
4
7
0
11 May 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables
  informed by expert knowledge
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
43
104
0
26 Mar 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
17
95
0
20 Feb 2020
$ε$-shotgun: $ε$-greedy Batch Bayesian Optimisation
εεε-shotgun: εεε-greedy Batch Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
Alma A. M. Rahat
8
15
0
05 Feb 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
21
35
0
17 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
J. Gardner
Ryan D. Turner
Matthias Poloczek
11
447
0
03 Oct 2019
Efficient and Scalable Batch Bayesian Optimization Using K-Means
Efficient and Scalable Batch Bayesian Optimization Using K-Means
Matthew J. Groves
Edward O. Pyzer-Knapp
6
15
0
04 Jun 2018
A Flexible Framework for Multi-Objective Bayesian Optimization using
  Random Scalarizations
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations
Biswajit Paria
Kirthevasan Kandasamy
Barnabás Póczós
4
125
0
30 May 2018
Actively Learning what makes a Discrete Sequence Valid
Actively Learning what makes a Discrete Sequence Valid
David Janz
J. Westhuizen
José Miguel Hernández-Lobato
13
22
0
15 Aug 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,134
0
06 Jun 2015
1