Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.01825
Cited By
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
6 June 2017
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space"
28 / 28 papers shown
Title
Distributed Thompson sampling under constrained communication
Saba Zerefa
Zhaolin Ren
Haitong Ma
Na Li
28
1
0
03 Jan 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
95
2
0
29 Oct 2024
Batched Bayesian optimization by maximizing the probability of including the optimum
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
42
0
0
08 Oct 2024
TS-RSR: A provably efficient approach for batch bayesian optimization
Zhaolin Ren
Na Li
29
2
0
07 Mar 2024
Parallel Hyperparameter Optimization Of Spiking Neural Network
Thomas Firmin
Pierre Boulet
El-Ghazali Talbi
30
3
0
01 Mar 2024
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
11
36
0
22 Apr 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
25
24
0
24 Jan 2023
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
197
0
07 Jun 2022
Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery
Chenru Duan
F. Liu
Aditya Nandy
Heather J. Kulik
AI4CE
16
34
0
06 May 2022
Distributionally Robust Bayesian Optimization with
φ
\varphi
φ
-divergences
Hisham Husain
Vu-Linh Nguyen
A. Hengel
38
13
0
04 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
N. Maus
Haydn Jones
Juston Moore
Matt J. Kusner
John Bradshaw
J. Gardner
BDL
49
69
0
28 Jan 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
30
100
0
11 Jan 2022
Representations and Strategies for Transferable Machine Learning Models in Chemical Discovery
Daniel R Harper
Aditya Nandy
N. Arunachalam
Chenru Duan
J. Janet
Heather J. Kulik
6
8
0
20 Jun 2021
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
11
288
0
20 Apr 2021
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
76
142
0
13 Dec 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
13
57
0
08 Nov 2020
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
18
5
0
15 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
13
43
0
19 Jun 2020
Using Bayesian Optimization to Accelerate Virtual Screening for the Discovery of Therapeutics Appropriate for Repurposing for COVID-19
Edward O. Pyzer-Knapp
4
7
0
11 May 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
43
104
0
26 Mar 2020
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
17
95
0
20 Feb 2020
ε
ε
ε
-shotgun:
ε
ε
ε
-greedy Batch Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
Alma A. M. Rahat
8
15
0
05 Feb 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
21
35
0
17 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
J. Gardner
Ryan D. Turner
Matthias Poloczek
11
447
0
03 Oct 2019
Efficient and Scalable Batch Bayesian Optimization Using K-Means
Matthew J. Groves
Edward O. Pyzer-Knapp
6
15
0
04 Jun 2018
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations
Biswajit Paria
Kirthevasan Kandasamy
Barnabás Póczós
4
125
0
30 May 2018
Actively Learning what makes a Discrete Sequence Valid
David Janz
J. Westhuizen
José Miguel Hernández-Lobato
13
22
0
15 Aug 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,134
0
06 Jun 2015
1