Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03301
Cited By
Neural networks and rational functions
11 June 2017
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural networks and rational functions"
19 / 19 papers shown
Title
Cauchy activation function and XNet
Xin Li
Zhihong Xia
Hongkun Zhang
48
4
0
28 Sep 2024
rKAN: Rational Kolmogorov-Arnold Networks
Alireza Afzal Aghaei
47
18
0
20 Jun 2024
A comparison of rational and neural network based approximations
V. Peiris
R. D. Millán
N. Sukhorukova
J. Ugon
22
0
0
08 Mar 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
28
6
0
03 Feb 2023
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
82
27
0
27 May 2022
On Regularizing Coordinate-MLPs
Sameera Ramasinghe
L. MacDonald
Simon Lucey
158
5
0
01 Feb 2022
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
41
643
0
29 Sep 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
53
18
0
21 Jul 2021
Parametric Complexity Bounds for Approximating PDEs with Neural Networks
Tanya Marwah
Zachary Chase Lipton
Andrej Risteski
28
19
0
03 Mar 2021
Consistent Sparse Deep Learning: Theory and Computation
Y. Sun
Qifan Song
F. Liang
BDL
43
27
0
25 Feb 2021
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
23
78
0
15 Jul 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
24
121
0
22 Jun 2019
A Theoretical Analysis of Deep Neural Networks and Parametric PDEs
Gitta Kutyniok
P. Petersen
Mones Raslan
R. Schneider
23
197
0
31 Mar 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
17
99
0
05 Mar 2019
On representation power of neural network-based graph embedding and beyond
Akifumi Okuno
Hidetoshi Shimodaira
21
2
0
31 May 2018
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
30
88
0
24 Mar 2018
Approximating Continuous Functions by ReLU Nets of Minimal Width
Boris Hanin
Mark Sellke
44
229
0
31 Oct 2017
Benefits of depth in neural networks
Matus Telgarsky
153
603
0
14 Feb 2016
1