Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03461
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
12 June 2017
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning"
50 / 191 papers shown
Title
Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Eric V. Strobl
CML
5
0
0
01 Jul 2025
Hybrid Meta-learners for Estimating Heterogeneous Treatment Effects
Zhongyuan Liang
L. Laan
Ahmed Alaa
16
0
0
16 Jun 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
15
0
0
09 Jun 2025
Do-PFN: In-Context Learning for Causal Effect Estimation
Jake Robertson
Arik Reuter
Siyuan Guo
Noah Hollmann
Frank Hutter
Bernhard Schölkopf
CML
53
0
0
06 Jun 2025
A Diffusion-Based Method for Learning the Multi-Outcome Distribution of Medical Treatments
Yuchen Ma
Jonas Schweisthal
Hengrui Zhang
Stefan Feuerriegel
OOD
CML
50
0
0
02 Jun 2025
Doubly Robust Alignment for Large Language Models
Erhan Xu
Kai Ye
Hongyi Zhou
Luhan Zhu
Francesco Quinzan
Chengchun Shi
29
0
0
01 Jun 2025
Estimating Misreporting in the Presence of Genuine Modification: A Causal Perspective
Dylan Zapzalka
Trenton Chang
Lindsay Warrenburg
Sae-Hwan Park
Daniel K. Shenfeld
Ravi B. Parikh
Jenna Wiens
Maggie Makar
22
0
0
29 May 2025
M-learner:A Flexible And Powerful Framework To Study Heterogeneous Treatment Effect In Mediation Model
Xingyu Li
Qing Liu
Tony Jiang
Hong Amy Xia
Brian P. Hobbs
Peng Wei
45
0
0
23 May 2025
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Prateek Jaiswal
Esmaeil Keyvanshokooh
Junyu Cao
47
0
0
22 May 2025
Treatment Effect Estimation for Optimal Decision-Making
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Mihaela van der Schaar
Stefan Feuerriegel
CML
63
0
0
19 May 2025
Forests for Differences: Robust Causal Inference Beyond Parametric DiD
Hugo Gobato Souto
Francisco Louzada Neto
61
0
0
14 May 2025
Causal Predictive Optimization and Generation for Business AI
Liyang Zhao
Olurotimi Seton
Himadeep Reddy Reddivari
Suvendu Jena
Shadow Zhao
Rachit Kumar
Changshuai Wei
CML
121
0
0
14 May 2025
Reinforcement Learning for Individual Optimal Policy from Heterogeneous Data
Rui Miao
Babak Shahbaba
Annie Qu
OffRL
110
0
0
14 May 2025
Conditional Front-door Adjustment for Heterogeneous Treatment Assignment Effect Estimation Under Non-adherence
Winston Chen
Trenton Chang
Jenna Wiens
CML
68
0
0
08 May 2025
Extended Fiducial Inference for Individual Treatment Effects via Deep Neural Networks
Sehwan Kim
F. Liang
FedML
93
0
0
04 May 2025
Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction
Maximilian Schuessler
Erik Sverdrup
Robert Tibshirani
CML
88
0
0
01 May 2025
Long-term Causal Inference via Modeling Sequential Latent Confounding
Weilin Chen
Ruichu Cai
Yuguang Yan
Zijian Li
José Miguel Hernández-Lobato
CML
163
1
0
26 Feb 2025
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
131
0
0
07 Feb 2025
Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates
Baozhen Wang
Xingye Qiao
201
2
0
28 Jan 2025
A New Transformation Approach for Uplift Modeling with Binary Outcome
Kun Li
Jiang Tian
113
0
0
10 Jan 2025
Session-Level Dynamic Ad Load Optimization using Offline Robust Reinforcement Learning
Tao Liu
Qi Xu
Wei Shi
Zhigang Hua
Shuang Yang
OffRL
87
0
0
09 Jan 2025
Double Machine Learning for Static Panel Models with Fixed Effects
Paul Clarke
Annalivia Polselli
171
3
0
03 Jan 2025
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data
Seungyeon Lee
Ruoqi Liu
Feixiong Cheng
Ping Zhang
58
0
0
31 Dec 2024
Practical Performative Policy Learning with Strategic Agents
Qianyi Chen
Ying Chen
Bo Li
218
0
0
02 Dec 2024
Comparing Targeting Strategies for Maximizing Social Welfare with Limited Resources
Vibhhu Sharma
Bryan Wilder
111
1
0
11 Nov 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
272
5
0
05 Nov 2024
Testing Generalizability in Causal Inference
Daniel de Vassimon Manela
Linying Yang
Robin J. Evans
78
0
0
05 Nov 2024
DiffPO: A causal diffusion model for learning distributions of potential outcomes
Yuchen Ma
Valentyn Melnychuk
Jonas Schweisthal
Stefan Feuerriegel
DiffM
188
7
0
11 Oct 2024
Conformal Prediction: A Data Perspective
Xiaofan Zhou
Baiting Chen
Yu Gui
Lu Cheng
1.0K
5
0
09 Oct 2024
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Dennis Frauen
Konstantin Hess
Stefan Feuerriegel
156
7
0
07 Jul 2024
CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect
Jiehui Zhou
Linxiao Yang
Xingyu Liu
Xinyue Gu
Lin Sun
Wei Chen
CML
75
0
0
01 Jul 2024
Causal Responder Detection
Tzviel Frostig
Oshri Machluf
Amitay Kamber
Elad Berkman
Raviv Pryluk
CML
43
1
0
25 Jun 2024
Compositional Models for Estimating Causal Effects
Purva Pruthi
David D. Jensen
CML
225
0
0
25 Jun 2024
Iterative Causal Segmentation: Filling the Gap between Market Segmentation and Marketing Strategy
Kaihua Ding
Jingsong Cui
Mohammad Soltani
Jing Jin
CML
OOD
52
0
0
23 May 2024
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
214
3
0
20 May 2024
Bounding Causal Effects with Leaky Instruments
David S. Watson
Jordan Penn
L. Gunderson
Gecia Bravo Hermsdorff
Afsaneh Mastouri
Ricardo M. A. Silva
CML
56
1
0
05 Apr 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
70
1
0
05 Mar 2024
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
78
2
0
01 Mar 2024
Conformal Convolution and Monte Carlo Meta-learners for Predictive Inference of Individual Treatment Effects
Jef Jonkers
Jarne Verhaeghe
Glenn Van Wallendael
Luc Duchateau
Sofie Van Hoecke
458
2
0
07 Feb 2024
Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference
Debo Cheng
Yang Xie
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
60
1
0
08 Dec 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
87
10
0
19 Nov 2023
CATE Estimation With Potential Outcome Imputation From Local Regression
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
CML
45
2
0
07 Nov 2023
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
107
4
0
25 Oct 2023
Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals
Y. Gat
Nitay Calderon
Amir Feder
Alexander Chapanin
Amit Sharma
Roi Reichart
133
36
0
01 Oct 2023
Fairness Implications of Heterogeneous Treatment Effect Estimation with Machine Learning Methods in Policy-making
Patrick Rehill
Nicholas Biddle
SyDa
CML
76
2
0
02 Sep 2023
Conformal Meta-learners for Predictive Inference of Individual Treatment Effects
Ahmed Alaa
Zaid Ahmad
Mark van der Laan
CML
197
16
0
28 Aug 2023
A Two-Part Machine Learning Approach to Characterizing Network Interference in A/B Testing
Yuan. Yuan
Kristen M. Altenburger
74
5
0
18 Aug 2023
Pareto Invariant Representation Learning for Multimedia Recommendation
Shanshan Huang
Haoxuan Li
Qingsong Li
Chunyuan Zheng
Li Liu
CML
94
12
0
09 Aug 2023
Forster-Warmuth Counterfactual Regression: A Unified Learning Approach
Yachong Yang
Arun K. Kuchibhotla
E. T. Tchetgen
54
3
0
31 Jul 2023
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Aaron Fisher
CML
53
1
0
19 Jul 2023
1
2
3
4
Next