ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04008
  4. Cited By
Recurrent Inference Machines for Solving Inverse Problems

Recurrent Inference Machines for Solving Inverse Problems

13 June 2017
P. Putzky
Max Welling
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Recurrent Inference Machines for Solving Inverse Problems"

50 / 63 papers shown
Title
ReQuestNet: A Foundational Learning model for Channel Estimation
ReQuestNet: A Foundational Learning model for Channel Estimation
Kumar Pratik
Pouriya Sadeghi
Gabriele Cesa
Sanaz Barghi
Joseph B. Soriaga
Yuanning Yu
Supratik Bhattacharjee
Arash Behboodi
204
1
0
12 Aug 2025
Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction
Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy PredictionComputer Vision and Pattern Recognition (CVPR), 2025
Dubing Chen
Huan Zheng
Jin Fang
Xingping Dong
Xianfei Li
Wenlong Liao
Tao He
Pai Peng
Jianbing Shen
495
2
0
17 Apr 2025
Evaluating structural uncertainty in accelerated MRI: are voxelwise measures useful surrogates?
Evaluating structural uncertainty in accelerated MRI: are voxelwise measures useful surrogates?
Luca Trautmann
Peter Wijeratne
Itamar Ronen
Ivor Simpson
193
0
0
13 Mar 2025
Recurrent Inference Machine for Medical Image Registration
Recurrent Inference Machine for Medical Image Registration
Yi Zhang
Yidong Zhao
H. Xue
Peter Kellman
Stefan Klein
Qian Tao
OOD
177
1
0
19 Jun 2024
An inversion problem for optical spectrum data via physics-guided
  machine learning
An inversion problem for optical spectrum data via physics-guided machine learningScientific Reports (Sci Rep), 2024
Hwiwoo Park
Jun H. Park
Jungseek Hwang
163
1
0
03 Apr 2024
Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image
  Reconstruction
Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction
Yidong Zhao
Yi Zhang
Qian Tao
191
1
0
01 Mar 2024
Robustness and Exploration of Variational and Machine Learning
  Approaches to Inverse Problems: An Overview
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
189
1
0
19 Feb 2024
Rotation Equivariant Proximal Operator for Deep Unfolding Methods in
  Image Restoration
Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration
J. Fu
Qi Xie
Deyu Meng
Zongben Xu
172
18
0
25 Dec 2023
Learned Interferometric Imaging for the SPIDER Instrument
Learned Interferometric Imaging for the SPIDER InstrumentRAS Techniques and Instruments (RTI), 2023
Matthijs Mars
M. Betcke
Jason D. McEwen
106
4
0
24 Jan 2023
On Retrospective k-space Subsampling schemes For Deep MRI Reconstruction
On Retrospective k-space Subsampling schemes For Deep MRI ReconstructionMagnetic Resonance Imaging (MRI), 2023
George Yiasemis
Clara I. Sánchez
Jan-Jakob Sonke
Jonas Teuwen
288
23
0
20 Jan 2023
Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
Near-Exact Recovery for Tomographic Inverse Problems via Deep LearningInternational Conference on Machine Learning (ICML), 2022
Martin Genzel
Ingo Gühring
Jan Macdonald
M. März
142
29
0
14 Jun 2022
Equilibrium Aggregation: Encoding Sets via Optimization
Equilibrium Aggregation: Encoding Sets via OptimizationConference on Uncertainty in Artificial Intelligence (UAI), 2022
Sergey Bartunov
F. Fuchs
Timothy Lillicrap
191
9
0
25 Feb 2022
Assessment of Data Consistency through Cascades of Independently
  Recurrent Inference Machines for fast and robust accelerated MRI
  reconstruction
Assessment of Data Consistency through Cascades of Independently Recurrent Inference Machines for fast and robust accelerated MRI reconstruction
D. Karkalousos
S. Noteboom
H. Hulst
F. Vos
M. Caan
OODAI4CE
246
12
0
30 Nov 2021
Recurrent Variational Network: A Deep Learning Inverse Problem Solver
  applied to the task of Accelerated MRI Reconstruction
Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction
George Yiasemis
Jan-Jakob Sonke
C. Sánchez
Jonas Teuwen
236
67
0
18 Nov 2021
Conditional Variational Autoencoder for Learned Image Reconstruction
Conditional Variational Autoencoder for Learned Image ReconstructionDe Computis (DC), 2021
Chen Zhang
Riccardo Barbano
Bangti Jin
DRL
164
27
0
22 Oct 2021
Deep MRI Reconstruction with Radial Subsampling
Deep MRI Reconstruction with Radial Subsampling
George Yiasemis
Chaoping Zhang
C. Sánchez
Jan-Jakob Sonke
Jonas Teuwen
250
9
0
17 Aug 2021
R3L: Connecting Deep Reinforcement Learning to Recurrent Neural Networks
  for Image Denoising via Residual Recovery
R3L: Connecting Deep Reinforcement Learning to Recurrent Neural Networks for Image Denoising via Residual Recovery
Rongkai Zhang
Jiang Zhu
Zhiyuan Zha
Justin Dauwels
Bihan Wen
136
7
0
12 Jul 2021
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Riccardo Barbano
Ž. Kereta
A. Hauptmann
Simon Arridge
Bangti Jin
162
12
0
06 Jul 2021
Fixed points of nonnegative neural networks
Fixed points of nonnegative neural networksJournal of machine learning research (JMLR), 2021
Tomasz Piotrowski
Renato L. G. Cavalcante
Mateusz Gabor
388
8
0
30 Jun 2021
Recurrent Inference Machines as inverse problem solvers for MR
  relaxometry
Recurrent Inference Machines as inverse problem solvers for MR relaxometry
E. Sabidussi
S. Klein
M. Caan
S. Bazrafkan
A. J. D. Dekker
Jan Sijbers
W. Niessen
D. H. Poot
91
14
0
08 Jun 2021
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an
  Iterative Network for Fanbeam-CT with Unknown Geometry
AAPM DL-Sparse-View CT Challenge Submission Report: Designing an Iterative Network for Fanbeam-CT with Unknown Geometry
Martin Genzel
Jan Macdonald
M. März
174
5
0
01 Jun 2021
Robust partial Fourier reconstruction for diffusion-weighted imaging
  using a recurrent convolutional neural network
Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural networkMagnetic Resonance in Medicine (MRM), 2021
Fasil Gadjimuradov
Thomas Benkert
M. Nickel
Andreas Maier
OOD
144
13
0
19 May 2021
Feasibility-based Fixed Point Networks
Feasibility-based Fixed Point NetworksFixed Point Theory and Algorithms for Sciences and Engineering (PTASE), 2021
Howard Heaton
Samy Wu Fung
A. Gibali
W. Yin
147
31
0
29 Apr 2021
Graph Convolutional Networks for Model-Based Learning in Nonlinear
  Inverse Problems
Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse ProblemsIEEE Transactions on Computational Imaging (IEEE Trans. Comput. Imaging), 2021
William Herzberg
D. Rowe
A. Hauptmann
S. Hamilton
GNNMedImAI4CE
109
43
0
28 Mar 2021
Foreground color prediction through inverse compositing
Foreground color prediction through inverse compositingIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Sebastian Lutz
A. Smolic
GAN
62
2
0
24 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A BenchmarkJournal of machine learning research (JMLR), 2021
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zinan Lin
W. Yin
494
292
0
23 Mar 2021
Equivariant neural networks for inverse problems
Equivariant neural networks for inverse problemsInverse Problems (IP), 2021
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
MedImAI4CE
152
36
0
23 Feb 2021
Recurrent Localization Networks applied to the Lippmann-Schwinger
  Equation
Recurrent Localization Networks applied to the Lippmann-Schwinger EquationComputational materials science (Comput. Mater. Sci.), 2021
Conlain Kelly
S. Kalidindi
AI4CE
196
9
0
29 Jan 2021
Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
Machine Learning in Magnetic Resonance Imaging: Image ReconstructionPhysica medica (Testo stampato) (Phys Med), 2020
Javier Montalt-Tordera
V. Muthurangu
A. Hauptmann
J. Steeden
AI4CE
172
52
0
09 Dec 2020
Results of the 2020 fastMRI Challenge for Machine Learning MR Image
  Reconstruction
Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
Matthew Muckley
Bruno Riemenschneider
A. Radmanesh
Sunwoo Kim
Geunu Jeong
...
Anuroop Sriram
Zhengnan Huang
N. Yakubova
Yvonne W. Lui
Florian Knoll
OOD
169
47
0
09 Dec 2020
A Helmholtz equation solver using unsupervised learning: Application to
  transcranial ultrasound
A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasoundJournal of Computational Physics (JCP), 2020
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
159
40
0
29 Oct 2020
Deep Learning in Photoacoustic Tomography: Current approaches and future
  directions
Deep Learning in Photoacoustic Tomography: Current approaches and future directionsJournal of Biomedical Optics (JBO), 2020
A. Hauptmann
B. Cox
187
140
0
16 Sep 2020
Deep Learning Methods for Solving Linear Inverse Problems: Research
  Directions and Paradigms
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and ParadigmsSignal Processing (Signal Process.), 2020
Yanna Bai
Wei Chen
Jie Chen
Weisi Guo
172
76
0
27 Jul 2020
RE-MIMO: Recurrent and Permutation Equivariant Neural MIMO Detection
RE-MIMO: Recurrent and Permutation Equivariant Neural MIMO Detection
Kumar Pratik
Bhaskar D. Rao
Max Welling
239
60
0
30 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCVBDLDRL
197
32
0
09 Jun 2020
Applications of Deep Learning for Ill-Posed Inverse Problems Within
  Optical Tomography
Applications of Deep Learning for Ill-Posed Inverse Problems Within Optical Tomography
A. Peace
MedIm
76
0
0
21 Mar 2020
Neural Enhanced Belief Propagation on Factor Graphs
Neural Enhanced Belief Propagation on Factor GraphsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Victor Garcia Satorras
Max Welling
415
106
0
04 Mar 2020
The Mertens Unrolled Network (MU-Net): A High Dynamic Range Fusion
  Neural Network for Through the Windshield Driver Recognition
The Mertens Unrolled Network (MU-Net): A High Dynamic Range Fusion Neural Network for Through the Windshield Driver Recognition
M. Ruby
David S. Bolme
Joel Brogan
David Cornett
Baldemar Delgado
Gavin Jager
Christi Johnson
Jose Martinez-Mendoza
H. Santos-Villalobos
Nisha Srinivas
CVBM
123
7
0
27 Feb 2020
The troublesome kernel -- On hallucinations, no free lunches and the
  accuracy-stability trade-off in inverse problems
The troublesome kernel -- On hallucinations, no free lunches and the accuracy-stability trade-off in inverse problemsSIAM Review (SIAM Rev.), 2020
N. Gottschling
Vegard Antun
A. Hansen
Ben Adcock
357
49
0
05 Jan 2020
Deep learning architectures for nonlinear operator functions and
  nonlinear inverse problems
Deep learning architectures for nonlinear operator functions and nonlinear inverse problemsMathematical Statistics and Learning (MSL), 2019
Maarten V. de Hoop
Matti Lassas
C. Wong
239
31
0
23 Dec 2019
Memory-efficient Learning for Large-scale Computational Imaging --
  NeurIPS deep inverse workshop
Memory-efficient Learning for Large-scale Computational Imaging -- NeurIPS deep inverse workshopIEEE Transactions on Computational Imaging (TCI), 2019
Michael R. Kellman
Jonathan I. Tamir
E. Bostan
Michael Lustig
Laura Waller
SupR
145
62
0
11 Dec 2019
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
F. Lanusse
Peter Melchior
Fred Moolekamp
BDL
154
13
0
09 Dec 2019
Invert to Learn to Invert
Invert to Learn to InvertNeural Information Processing Systems (NeurIPS), 2019
P. Putzky
Max Welling
118
78
0
25 Nov 2019
The frontier of simulation-based inference
The frontier of simulation-based inferenceProceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
536
1,026
0
04 Nov 2019
Uncertainty Quantification with Generative Models
Uncertainty Quantification with Generative Models
Vanessa Böhm
F. Lanusse
U. Seljak
128
29
0
22 Oct 2019
i-RIM applied to the fastMRI challenge
i-RIM applied to the fastMRI challenge
P. Putzky
D. Karkalousos
Jonas Teuwen
Nikita Miriakov
Bart Bakker
M. Caan
Max Welling
164
41
0
20 Oct 2019
Meta-Learning Deep Energy-Based Memory Models
Meta-Learning Deep Energy-Based Memory ModelsInternational Conference on Learning Representations (ICLR), 2019
Sergey Bartunov
Jack W. Rae
Simon Osindero
Timothy Lillicrap
298
35
0
07 Oct 2019
Multi-Scale Learned Iterative Reconstruction
Multi-Scale Learned Iterative ReconstructionIEEE Transactions on Computational Imaging (TCI), 2019
A. Hauptmann
J. Adler
Simon Arridge
Ozan Oktem
176
40
0
01 Aug 2019
Degrees of Freedom Analysis of Unrolled Neural Networks
Degrees of Freedom Analysis of Unrolled Neural Networks
Morteza Mardani
Qingyun Sun
Vardan Papyan
S. Vasanawala
John M. Pauly
D. Donoho
UQCV
110
9
0
10 Jun 2019
Combining Generative and Discriminative Models for Hybrid Inference
Combining Generative and Discriminative Models for Hybrid InferenceNeural Information Processing Systems (NeurIPS), 2019
Victor Garcia Satorras
Zeynep Akata
Max Welling
163
65
0
06 Jun 2019
12
Next