ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07269
  4. Cited By
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
v1v2v3 (latest)

Explanation in Artificial Intelligence: Insights from the Social Sciences

22 June 2017
Tim Miller
    XAI
ArXiv (abs)PDFHTML

Papers citing "Explanation in Artificial Intelligence: Insights from the Social Sciences"

50 / 1,336 papers shown
Interpretable Directed Diversity: Leveraging Model Explanations for
  Iterative Crowd Ideation
Interpretable Directed Diversity: Leveraging Model Explanations for Iterative Crowd Ideation
Yunlong Wang
Priyadarshini Venkatesh
Brian Y. Lim
338
28
0
21 Sep 2021
Counterfactual Instances Explain Little
Counterfactual Instances Explain Little
Adam White
Artur Garcez
CML
141
5
0
20 Sep 2021
Some Critical and Ethical Perspectives on the Empirical Turn of AI
  Interpretability
Some Critical and Ethical Perspectives on the Empirical Turn of AI Interpretability
Jean-Marie John-Mathews
206
39
0
20 Sep 2021
Interpretable Local Tree Surrogate Policies
Interpretable Local Tree Surrogate Policies
John Mern
Sidhart Krishnan
Anil Yildiz
Kyle Hatch
Mykel J. Kochenderfer
OffRL
111
0
0
16 Sep 2021
Detection Accuracy for Evaluating Compositional Explanations of Units
Detection Accuracy for Evaluating Compositional Explanations of Units
Sayo M. Makinwa
Biagio La Rosa
Roberto Capobianco
FAttCoGe
260
3
0
16 Sep 2021
CounterNet: End-to-End Training of Prediction Aware Counterfactual
  Explanations
CounterNet: End-to-End Training of Prediction Aware Counterfactual Explanations
Hangzhi Guo
T. Nguyen
A. Yadav
OffRL
181
21
0
15 Sep 2021
AdViCE: Aggregated Visual Counterfactual Explanations for Machine
  Learning Model Validation
AdViCE: Aggregated Visual Counterfactual Explanations for Machine Learning Model Validation
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAMLCMLHAI
82
25
0
12 Sep 2021
An Objective Metric for Explainable AI: How and Why to Estimate the
  Degree of Explainability
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
232
41
0
11 Sep 2021
Modelling GDPR-Compliant Explanations for Trustworthy AI
Modelling GDPR-Compliant Explanations for Trustworthy AIInternational Conference on Electronic Government and the Information Systems Perspective (ICEGISP), 2020
Francesco Sovrano
F. Vitali
M. Palmirani
142
18
0
09 Sep 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAICML
489
1
0
08 Sep 2021
ExCode-Mixed: Explainable Approaches towards Sentiment Analysis on
  Code-Mixed Data using BERT models
ExCode-Mixed: Explainable Approaches towards Sentiment Analysis on Code-Mixed Data using BERT models
Aman Priyanshu
Aleti Vardhan
Sudarshan Sivakumar
Supriti Vijay
Nipuna Chhabra
186
0
0
07 Sep 2021
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
  Human Trust in Image Recognition Models
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
Arjun Reddy Akula
Keze Wang
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
249
55
0
03 Sep 2021
Improving HRI through robot architecture transparency
Improving HRI through robot architecture transparencyInternational Journal of Social Robotics (JSR), 2021
L. Hindemith
Anna-Lisa Vollmer
Christiane B. Wiebel-Herboth
Britta Wrede
193
6
0
26 Aug 2021
VAE-CE: Visual Contrastive Explanation using Disentangled VAEs
VAE-CE: Visual Contrastive Explanation using Disentangled VAEs
Y. Poels
Vlado Menkovski
CoGeDRL
244
3
0
20 Aug 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
  and Survey
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
195
74
0
20 Aug 2021
Towards Visual Explainable Active Learning for Zero-Shot Classification
Towards Visual Explainable Active Learning for Zero-Shot Classification
Shichao Jia
Zeyu Li
Polydoros Giannouris
Jiawan Zhang
VLM
140
30
0
15 Aug 2021
Seven challenges for harmonizing explainability requirements
Seven challenges for harmonizing explainability requirements
Jiahao Chen
Victor Storchan
175
9
0
11 Aug 2021
Trading Complexity for Sparsity in Random Forest Explanations
Trading Complexity for Sparsity in Random Forest ExplanationsAAAI Conference on Artificial Intelligence (AAAI), 2021
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
158
50
0
11 Aug 2021
On the Explanatory Power of Decision Trees
On the Explanatory Power of Decision Trees
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
FAtt
141
12
0
11 Aug 2021
Logic Explained Networks
Logic Explained NetworksInternational Workshop on Neural-Symbolic Learning and Reasoning (NeSy), 2021
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lio
Marco Maggini
S. Melacci
205
88
0
11 Aug 2021
Post-hoc Interpretability for Neural NLP: A Survey
Post-hoc Interpretability for Neural NLP: A SurveyACM Computing Surveys (CSUR), 2021
Andreas Madsen
Siva Reddy
A. Chandar
XAI
357
278
0
10 Aug 2021
VBridge: Connecting the Dots Between Features and Data to Explain
  Healthcare Models
VBridge: Connecting the Dots Between Features and Data to Explain Healthcare ModelsIEEE Transactions on Visualization and Computer Graphics (TVCG), 2021
Furui Cheng
Dongyu Liu
F. Du
Yanna Lin
Alexandra Zytek
Haomin Li
Huamin Qu
K. Veeramachaneni
127
49
0
04 Aug 2021
Accelerating the Learning of TAMER with Counterfactual Explanations
Accelerating the Learning of TAMER with Counterfactual Explanations
Jakob Karalus
F. Lindner
OffRL
173
6
0
03 Aug 2021
Discovering User-Interpretable Capabilities of Black-Box Planning Agents
Discovering User-Interpretable Capabilities of Black-Box Planning AgentsInternational Conference on Principles of Knowledge Representation and Reasoning (KR), 2021
Pulkit Verma
Shashank Rao Marpally
Siddharth Srivastava
ELMLLMAG
398
25
0
28 Jul 2021
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
The Who in XAI: How AI Background Shapes Perceptions of AI ExplanationsInternational Conference on Human Factors in Computing Systems (CHI), 2021
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
246
108
0
28 Jul 2021
Resisting Out-of-Distribution Data Problem in Perturbation of XAI
Resisting Out-of-Distribution Data Problem in Perturbation of XAI
Luyu Qiu
Yi Yang
Caleb Chen Cao
Jing Liu
Yueyuan Zheng
H. Ngai
J. H. Hsiao
Lei Chen
235
19
0
27 Jul 2021
Improving Visualization Interpretation Using Counterfactuals
Improving Visualization Interpretation Using CounterfactualsIEEE Transactions on Visualization and Computer Graphics (TVCG), 2021
Smiti Kaul
D. Borland
Nan Cao
David Gotz
CML
120
24
0
21 Jul 2021
Uncertainty Estimation and Out-of-Distribution Detection for
  Counterfactual Explanations: Pitfalls and Solutions
Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions
Eoin Delaney
Derek Greene
Mark T. Keane
212
27
0
20 Jul 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A
  Survey of Challenges and Solutions
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and SolutionsIEEE Access (IEEE Access), 2021
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaMLAILawOOD
269
35
0
20 Jul 2021
Roadmap of Designing Cognitive Metrics for Explainable Artificial
  Intelligence (XAI)
Roadmap of Designing Cognitive Metrics for Explainable Artificial Intelligence (XAI)
J. H. Hsiao
H. Ngai
Luyu Qiu
Yi Yang
Caleb Chen Cao
XAI
151
32
0
20 Jul 2021
Using automated decision-making (ADM) to allocate Covid-19 vaccinations?
  Exploring the roles of trust and social group preference on the legitimacy of
  ADM vs. human decision-making
Using automated decision-making (ADM) to allocate Covid-19 vaccinations? Exploring the roles of trust and social group preference on the legitimacy of ADM vs. human decision-makingAi & Society (AS), 2021
Marco Lünich
Kimon Kieslich
157
15
0
19 Jul 2021
Model Uncertainty and Correctability for Directed Graphical Models
Model Uncertainty and Correctability for Directed Graphical Models
Panagiota Birmpa
Jinchao Feng
Markos A. Katsoulakis
Luc Rey-Bellet
220
2
0
17 Jul 2021
Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI
  Interactions
Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI InteractionsAAAI/ACM Conference on AI, Ethics, and Society (AIES), 2021
Kailas Vodrahalli
Roxana Daneshjou
Tobias Gerstenberg
James Zou
268
76
0
14 Jul 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Shucheng Zhou
FaML
399
256
0
12 Jul 2021
The Role of Social Movements, Coalitions, and Workers in Resisting
  Harmful Artificial Intelligence and Contributing to the Development of
  Responsible AI
The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI
Susan von Struensee
92
4
0
11 Jul 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular DataApplied Sciences (AS), 2021
Raphael Mazzine
David Martens
212
36
0
09 Jul 2021
Contrastive Explanations for Argumentation-Based Conclusions
Contrastive Explanations for Argumentation-Based Conclusions
A. Borg
Floris Bex
139
7
0
07 Jul 2021
Levels of explainable artificial intelligence for human-aligned
  conversational explanations
Levels of explainable artificial intelligence for human-aligned conversational explanations
Richard Dazeley
Peter Vamplew
Cameron Foale
Charlotte Young
Sunil Aryal
F. Cruz
183
103
0
07 Jul 2021
Understanding Consumer Preferences for Explanations Generated by XAI
  Algorithms
Understanding Consumer Preferences for Explanations Generated by XAI Algorithms
Yanou Ramon
T. Vermeire
Olivier Toubia
David Martens
Theodoros Evgeniou
149
12
0
06 Jul 2021
Improving a neural network model by explanation-guided training for
  glioma classification based on MRI data
Improving a neural network model by explanation-guided training for glioma classification based on MRI data
Frantisek Sefcik
Wanda Benesova
209
24
0
05 Jul 2021
ARM-Net: Adaptive Relation Modeling Network for Structured Data
ARM-Net: Adaptive Relation Modeling Network for Structured Data
Shaofeng Cai
Kaiping Zheng
Gang Chen
H. V. Jagadish
Beng Chin Ooi
Meihui Zhang
257
61
0
05 Jul 2021
An Explainable AI System for the Diagnosis of High Dimensional
  Biomedical Data
An Explainable AI System for the Diagnosis of High Dimensional Biomedical Data
A. Ultsch
J. Hoffmann
M. Röhnert
M. Bonin
U. Oelschlägel
C. Brendel
M. Thrun
162
7
0
05 Jul 2021
Efficient Explanations for Knowledge Compilation Languages
Efficient Explanations for Knowledge Compilation Languages
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Martin C. Cooper
Nicholas M. Asher
Sasha Rubin
244
17
0
04 Jul 2021
Exploring the Efficacy of Automatically Generated Counterfactuals for
  Sentiment Analysis
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment AnalysisAnnual Meeting of the Association for Computational Linguistics (ACL), 2021
Linyi Yang
Jiazheng Li
Padraig Cunningham
Yue Zhang
Barry Smyth
Ruihai Dong
199
50
0
29 Jun 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
172
30
0
29 Jun 2021
Contrastive Counterfactual Visual Explanations With Overdetermination
Contrastive Counterfactual Visual Explanations With OverdeterminationMachine-mediated learning (ML), 2021
Adam White
K. Ngan
James Phelan
Saman Sadeghi Afgeh
Kevin Ryan
C. Reyes-Aldasoro
Artur Garcez
222
12
0
28 Jun 2021
Explanatory Pluralism in Explainable AI
Explanatory Pluralism in Explainable AIInternational Cross-Domain Conference on Machine Learning and Knowledge Extraction (CD-MAKE), 2021
Yiheng Yao
XAI
148
5
0
26 Jun 2021
Using Issues to Explain Legal Decisions
Using Issues to Explain Legal Decisions
Trevor J. M. Bench-Capon
AILawELM
50
10
0
25 Jun 2021
False perfection in machine prediction: Detecting and assessing
  circularity problems in machine learning
False perfection in machine prediction: Detecting and assessing circularity problems in machine learning
Michael Hagmann
Stefan Riezler
122
1
0
23 Jun 2021
Not all users are the same: Providing personalized explanations for
  sequential decision making problems
Not all users are the same: Providing personalized explanations for sequential decision making problems
Utkarsh Soni
S. Sreedharan
Subbarao Kambhampati
139
11
0
23 Jun 2021
Previous
123...171819...252627
Next