Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08498
Cited By
Spectrally-normalized margin bounds for neural networks
26 June 2017
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spectrally-normalized margin bounds for neural networks"
50 / 803 papers shown
Title
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis D. Haupt
T. Zhao
25
78
0
13 Jun 2018
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
30
141
0
11 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
14
373
0
08 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
27
140
0
04 Jun 2018
Minnorm training: an algorithm for training over-parameterized deep neural networks
Yamini Bansal
Madhu S. Advani
David D. Cox
Andrew M. Saxe
ODL
13
18
0
03 Jun 2018
Interpreting Deep Learning: The Machine Learning Rorschach Test?
Adam S. Charles
AAML
HAI
AI4CE
19
9
0
01 Jun 2018
Representational Power of ReLU Networks and Polynomial Kernels: Beyond Worst-Case Analysis
Frederic Koehler
Andrej Risteski
11
12
0
29 May 2018
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
17
515
0
28 May 2018
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
31
200
0
26 May 2018
Step Size Matters in Deep Learning
Kamil Nar
S. Shankar Sastry
11
41
0
22 May 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
16
225
0
22 May 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
13
57
0
21 May 2018
A Study on Overfitting in Deep Reinforcement Learning
Chiyuan Zhang
Oriol Vinyals
Rémi Munos
Samy Bengio
OffRL
OnRL
16
383
0
18 Apr 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
27
209
0
16 Apr 2018
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
10
79
0
15 Apr 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
H. Gouk
E. Frank
Bernhard Pfahringer
M. Cree
10
466
0
12 Apr 2018
Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization
Jiong Zhang
Qi Lei
Inderjit S. Dhillon
12
110
0
25 Mar 2018
Residual Networks: Lyapunov Stability and Convex Decomposition
Kamil Nar
S. Shankar Sastry
ODL
14
3
0
22 Mar 2018
Information Theoretic Interpretation of Deep learning
Tianchen Zhao
FAtt
18
2
0
21 Mar 2018
FeTa: A DCA Pruning Algorithm with Generalization Error Guarantees
Konstantinos Pitas
Mike Davies
P. Vandergheynst
13
2
0
12 Mar 2018
On the Power of Over-parametrization in Neural Networks with Quadratic Activation
S. Du
J. Lee
16
267
0
03 Mar 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
13
435
0
23 Feb 2018
Asynchronous Byzantine Machine Learning (the case of SGD)
Georgios Damaskinos
El-Mahdi El-Mhamdi
R. Guerraoui
Rhicheek Patra
Mahsa Taziki
FedML
26
42
0
22 Feb 2018
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
17
74
0
22 Feb 2018
Generalization in Machine Learning via Analytical Learning Theory
Kenji Kawaguchi
Yoshua Bengio
Vikas Verma
Leslie Pack Kaelbling
19
10
0
21 Feb 2018
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
Yi Zhou
Yingbin Liang
Huishuai Zhang
MLT
21
26
0
19 Feb 2018
Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy
H. Fu
Yuejie Chi
Yingbin Liang
FedML
16
39
0
18 Feb 2018
The Role of Information Complexity and Randomization in Representation Learning
Matías Vera
Pablo Piantanida
L. Rey Vega
35
14
0
14 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
19
630
0
14 Feb 2018
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent
Yifan Wu
Barnabás Póczós
Aarti Singh
MLT
19
8
0
13 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
33
296
0
12 Feb 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
11
414
0
05 Feb 2018
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
35
39
0
05 Feb 2018
Fix your classifier: the marginal value of training the last weight layer
Elad Hoffer
Itay Hubara
Daniel Soudry
27
101
0
14 Jan 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
16
128
0
30 Dec 2017
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
22
144
0
26 Dec 2017
Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
18
31
0
26 Dec 2017
The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning
Siyuan Ma
Raef Bassily
M. Belkin
19
285
0
18 Dec 2017
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
19
543
0
18 Dec 2017
On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang
Qiang Liu
Dengyong Zhou
Tao Xu
Xiaodong He
16
103
0
07 Nov 2017
Fisher-Rao Metric, Geometry, and Complexity of Neural Networks
Tengyuan Liang
T. Poggio
Alexander Rakhlin
J. Stokes
25
224
0
05 Nov 2017
Network-size independent covering number bounds for deep networks
Mayank Kabra
K. Branson
16
0
0
02 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
38
854
0
29 Oct 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
37
276
0
27 Oct 2017
Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior
Charles H. Martin
Michael W. Mahoney
AI4CE
22
62
0
26 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
52
9,587
0
25 Oct 2017
Implicit Regularization in Deep Learning
Behnam Neyshabur
17
145
0
06 Sep 2017
The duality structure gradient descent algorithm: analysis and applications to neural networks
Thomas Flynn
12
1
0
01 Aug 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
14
600
0
29 Jul 2017
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
27
414
0
16 Jul 2017
Previous
1
2
3
...
15
16
17
Next