Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.09773
Cited By
Interpretability via Model Extraction
29 June 2017
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretability via Model Extraction"
30 / 30 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
76
2
0
14 Feb 2025
Leveraging Historical Medical Records as a Proxy via Multimodal Modeling and Visualization to Enrich Medical Diagnostic Learning
Ouyang Yang
Yuchen Wu
He Wang
Chenyang Zhang
Furui Cheng
Chang Jiang
Lixia Jin
Yuanwu Cao
Qu Li
16
6
0
23 Jul 2023
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
16
1
0
10 Jun 2023
Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects
Conrad Sanderson
David M. Douglas
Qinghua Lu
43
12
0
17 Apr 2023
Concept Learning for Interpretable Multi-Agent Reinforcement Learning
Renos Zabounidis
Joseph Campbell
Simon Stepputtis
Dana Hughes
Katia P. Sycara
39
15
0
23 Feb 2023
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRM
XAI
50
39
0
24 Oct 2022
Superpolynomial Lower Bounds for Decision Tree Learning and Testing
Caleb M. Koch
Carmen Strassle
Li-Yang Tan
32
8
0
12 Oct 2022
A Human-Centric Take on Model Monitoring
Murtuza N. Shergadwala
Himabindu Lakkaraju
K. Kenthapadi
43
9
0
06 Jun 2022
Neural Basis Models for Interpretability
Filip Radenovic
Abhimanyu Dubey
D. Mahajan
FAtt
32
46
0
27 May 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
186
186
0
03 Feb 2022
Forward Composition Propagation for Explainable Neural Reasoning
Isel Grau
Gonzalo Nápoles
M. Bello
Yamisleydi Salgueiro
A. Jastrzębska
22
0
0
23 Dec 2021
Model Doctor: A Simple Gradient Aggregation Strategy for Diagnosing and Treating CNN Classifiers
Zunlei Feng
Jiacong Hu
Sai Wu
Xiaotian Yu
Mingli Song
Xiuming Zhang
40
13
0
09 Dec 2021
Provably efficient, succinct, and precise explanations
Guy Blanc
Jane Lange
Li-Yang Tan
FAtt
37
35
0
01 Nov 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
24
84
0
12 Nov 2020
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
24
85
0
21 Oct 2020
Contextual Semantic Interpretability
Diego Marcos
Ruth C. Fong
Sylvain Lobry
Rémi Flamary
Nicolas Courty
D. Tuia
SSL
20
27
0
18 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Born-Again Tree Ensembles
Thibaut Vidal
Toni Pacheco
Maximilian Schiffer
62
53
0
24 Mar 2020
Interpretability of Blackbox Machine Learning Models through Dataview Extraction and Shadow Model creation
Rupam Patir
Shubham Singhal
C. Anantaram
Vikram Goyal
13
0
0
02 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
A framework for the extraction of Deep Neural Networks by leveraging public data
Soham Pal
Yash Gupta
Aditya Shukla
Aditya Kanade
S. Shevade
V. Ganapathy
FedML
MLAU
MIACV
36
56
0
22 May 2019
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
22
169
0
03 Dec 2018
A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees
Klaus Broelemann
Gjergji Kasneci
24
20
0
25 Sep 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
39
1,071
0
31 Jul 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
21
63
0
21 Feb 2018
1