Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.10295
Cited By
Noisy Networks for Exploration
30 June 2017
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
Alex Graves
Vlad Mnih
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noisy Networks for Exploration"
36 / 36 papers shown
Title
PPO-BR: Dual-Signal Entropy-Reward Adaptation for Trust Region Policy Optimization
Ben Rahman
24
0
0
23 May 2025
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
76
0
0
31 Dec 2024
Pretraining with random noise for uncertainty calibration
Jeonghwan Cheon
Se-Bum Paik
OnRL
84
1
0
23 Dec 2024
Beyond The Rainbow: High Performance Deep Reinforcement Learning on a Desktop PC
Tyler Clark
Mark Towers
Christine Evers
Jonathon Hare
OffRL
79
1
0
06 Nov 2024
Prioritized Generative Replay
Renhao Wang
Kevin Frans
Pieter Abbeel
Sergey Levine
Alexei A. Efros
OnRL
DiffM
132
3
0
23 Oct 2024
The Evolution of Reinforcement Learning in Quantitative Finance: A Survey
Nikolaos Pippas
Cagatay Turkay
Elliot A. Ludvig
AIFin
113
3
0
20 Aug 2024
Highly Efficient Self-Adaptive Reward Shaping for Reinforcement Learning
Haozhe Ma
Zhengding Luo
Thanh Vinh Vo
Kuankuan Sima
Tze-Yun Leong
70
6
0
06 Aug 2024
Random Latent Exploration for Deep Reinforcement Learning
Srinath Mahankali
Zhang-Wei Hong
Ayush Sekhari
Alexander Rakhlin
Pulkit Agrawal
90
3
0
18 Jul 2024
An Invitation to Deep Reinforcement Learning
Bernhard Jaeger
Andreas Geiger
OffRL
OOD
95
5
0
13 Dec 2023
Improving robot navigation in crowded environments using intrinsic rewards
Diego Martínez Baselga
L. Riazuelo
Luis Montano
61
13
0
13 Feb 2023
Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding
Seonguk Park
Gyubok Lee
Manoj Bhat
Jimin Seo
Minseok Kang
Jonathan M Francis
Ashwin R. Jadhav
Paul Pu Liang
Louis-Philippe Morency
149
119
0
06 Mar 2020
End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
64
207
0
25 Nov 2019
Diversity-Driven Exploration Strategy for Deep Reinforcement Learning
Zhang-Wei Hong
Tzu-Yun Shann
Shih-Yang Su
Yi-Hsiang Chang
Chun-Yi Lee
42
123
0
13 Feb 2018
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
Zachary Chase Lipton
Xiujun Li
Jianfeng Gao
Lihong Li
Faisal Ahmed
Li Deng
39
171
0
15 Nov 2017
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
63
1,497
0
21 Jul 2017
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
40
594
0
06 Jun 2017
Bayesian Recurrent Neural Networks
Meire Fortunato
Charles Blundell
Oriol Vinyals
BDL
28
182
0
10 Apr 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
62
302
0
22 Mar 2017
Minimax Regret Bounds for Reinforcement Learning
M. G. Azar
Ian Osband
Rémi Munos
53
768
0
16 Mar 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
54
1,523
0
10 Mar 2017
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
147
1,465
0
06 Jun 2016
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
49
1,302
0
15 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
148
8,805
0
04 Feb 2016
Training Recurrent Neural Networks by Diffusion
H. Mobahi
ODL
35
46
0
16 Jan 2016
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
52
3,742
0
20 Nov 2015
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
93
7,590
0
22 Sep 2015
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
132
13,174
0
09 Sep 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
403
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
76
1,878
0
20 May 2015
On Graduated Optimization for Stochastic Non-Convex Problems
Elad Hazan
Kfir Y. Levy
Shai Shalev-Shwartz
29
115
0
12 Mar 2015
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
217
6,722
0
19 Feb 2015
Generalization and Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Zheng Wen
46
312
0
04 Feb 2014
Kalman Temporal Differences
Matthieu Geist
Olivier Pietquin
35
101
0
16 Jan 2014
The Sample-Complexity of General Reinforcement Learning
Tor Lattimore
Marcus Hutter
P. Sunehag
VLM
37
67
0
22 Aug 2013
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
46
2,992
0
19 Jul 2012
Evolutionary Algorithms for Reinforcement Learning
J. Grefenstette
David E. Moriarty
A. Schultz
OffRL
43
408
0
01 Jun 2011
1