ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.03307
  4. Cited By
Fast calibrated additive quantile regression
v1v2v3v4 (latest)

Fast calibrated additive quantile regression

11 July 2017
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
ArXiv (abs)PDFHTML

Papers citing "Fast calibrated additive quantile regression"

33 / 33 papers shown
Title
Forecasting time series with constraints
Forecasting time series with constraints
Nathan Doumèche
Francis Bach
Éloi Bedek
Gérard Biau
Claire Boyer
Y. Goude
AI4TS
203
0
0
14 Feb 2025
Leveraging Graph Neural Networks to Forecast Electricity Consumption
Leveraging Graph Neural Networks to Forecast Electricity Consumption
Eloi Campagne
Yvenn Amara-Ouali
Y. Goude
Argyris Kalogeratos
AI4TS
80
1
0
30 Aug 2024
Gratia: An R package for exploring generalized additive models
Gratia: An R package for exploring generalized additive models
Gavin L. Simpson
18
5
0
27 Jun 2024
Beyond the Norms: Detecting Prediction Errors in Regression Models
Beyond the Norms: Detecting Prediction Errors in Regression Models
A. Altieri
Marco Romanelli
Georg Pichler
F. Alberge
Pablo Piantanida
85
0
0
11 Jun 2024
Investigating differences in lab-quality and remote recording methods
  with dynamic acoustic measures
Investigating differences in lab-quality and remote recording methods with dynamic acoustic measures
Cong Zhang
Kathleen Jepson
Yu-Ying Chuang
31
2
0
25 Apr 2024
On Neighbourhood Cross Validation
On Neighbourhood Cross Validation
Simon N. Wood
33
1
0
25 Apr 2024
Multi-fidelity Gaussian process surrogate modeling for regression
  problems in physics
Multi-fidelity Gaussian process surrogate modeling for regression problems in physics
Kislaya Ravi
Vladyslav Fediukov
Felix Dietrich
T. Neckel
Fabian Buse
Michael Bergmann
H. Bungartz
AI4CE
64
6
0
18 Apr 2024
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for
  Regression Uncertainty Estimation
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Tomoharu Iwata
Atsutoshi Kumagai
BDLUQCV
78
1
0
13 Dec 2023
Bayesian Quantile Regression with Subset Selection: A Posterior
  Summarization Perspective
Bayesian Quantile Regression with Subset Selection: A Posterior Summarization Perspective
J. Feldman
Daniel R. Kowal
30
0
0
03 Nov 2023
Frugal day-ahead forecasting of multiple local electricity loads by
  aggregating adaptive models
Frugal day-ahead forecasting of multiple local electricity loads by aggregating adaptive models
Guillaume Lambert
Bachir Hamrouche
Joseph de Vilmarest
AI4TS
60
3
0
16 Feb 2023
Adaptive Probabilistic Forecasting of Electricity (Net-)Load
Adaptive Probabilistic Forecasting of Electricity (Net-)Load
Joseph de Vilmarest
J. Browell
Matteo Fasiolo
Y. Goude
Olivier Wintenberger
91
10
0
24 Jan 2023
Scalable estimation and inference for censored quantile regression
  process
Scalable estimation and inference for censored quantile regression process
Xuming He
Xiaoou Pan
Kean Ming Tan
Wen-Xin Zhou
57
12
0
23 Oct 2022
Calibration tests beyond classification
Calibration tests beyond classification
David Widmann
Fredrik Lindsten
Dave Zachariah
85
18
0
21 Oct 2022
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
89
8
0
04 Jul 2022
Bayesian non-conjugate regression via variational message passing
Bayesian non-conjugate regression via variational message passing
C. Castiglione
M. Bernardi
44
0
0
19 Jun 2022
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Ziyi Huang
Henry Lam
Haofeng Zhang
PERUD
61
5
0
09 Jun 2022
On the Use of $L$-functionals in Regression Models
On the Use of LLL-functionals in Regression Models
Ola Hössjer
Måns Karlsson
65
3
0
28 Apr 2022
Learning for Spatial Branching: An Algorithm Selection Approach
Learning for Spatial Branching: An Algorithm Selection Approach
Bissan Ghaddar
Ignacio Gómez-Casares
Julio González-Díaz
Brais González-Rodríguez
Beatriz Pateiro-López
Sofía Rodríguez-Ballesteros
61
12
0
22 Apr 2022
Classifier Calibration: A survey on how to assess and improve predicted
  class probabilities
Classifier Calibration: A survey on how to assess and improve predicted class probabilities
Telmo de Menezes e Silva Filho
Hao Song
Miquel Perelló Nieto
Raúl Santos-Rodríguez
Meelis Kull
Peter A. Flach
186
85
0
20 Dec 2021
Daily peak electrical load forecasting with a multi-resolution approach
Daily peak electrical load forecasting with a multi-resolution approach
Yvenn Amara-Ouali
Matteo Fasiolo
Y. Goude
Hui Yan
39
20
0
08 Dec 2021
Hierarchical transfer learning with applications for electricity load
  forecasting
Hierarchical transfer learning with applications for electricity load forecasting
A. Antoniadis
Solenne Gaucher
Y. Goude
AI4TS
66
11
0
16 Nov 2021
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
93
72
0
21 Sep 2021
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Fabian Küppers
Jan Kronenberger
Jonas Schneider
Anselm Haselhoff
UQCVBDL
73
8
0
21 Sep 2021
Bayesian Effect Selection for Additive Quantile Regression with an
  Analysis to Air Pollution Thresholds
Bayesian Effect Selection for Additive Quantile Regression with an Analysis to Air Pollution Thresholds
Nadja Klein
J. Mateu
11
0
0
23 May 2021
Flexible Specification Testing in Quantile Regression Models
Flexible Specification Testing in Quantile Regression Models
Tim Kutzker
Nadja Klein
Dominik Wied
31
2
0
19 May 2021
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
  Quantification
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
209
89
0
18 Nov 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TSAI4CE
114
405
0
19 Oct 2020
Methods to Deal with Unknown Populational Minima during Parameter
  Inference
Methods to Deal with Unknown Populational Minima during Parameter Inference
M. Saldanha
A. K. Suzuki
13
0
0
16 Oct 2020
Adaptive Methods for Short-Term Electricity Load Forecasting During
  COVID-19 Lockdown in France
Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-19 Lockdown in France
David Obst
Joseph de Vilmarest
Y. Goude
54
71
0
14 Sep 2020
qgam: Bayesian non-parametric quantile regression modelling in R
qgam: Bayesian non-parametric quantile regression modelling in R
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
33
60
0
07 Jul 2020
evgam: An R package for Generalized Additive Extreme Value Models
evgam: An R package for Generalized Additive Extreme Value Models
B. Youngman
59
42
0
09 Mar 2020
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
200
112
0
15 May 2019
Kinetic energy choice in Hamiltonian/hybrid Monte Carlo
Kinetic energy choice in Hamiltonian/hybrid Monte Carlo
Samuel Livingstone
Michael F Faulkner
Gareth O. Roberts
92
45
0
08 Jun 2017
1