Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.00588
Cited By
v1
v2 (latest)
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
2 August 2017
M. Raissi
George Karniadakis
AI4CE
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations"
50 / 318 papers shown
Title
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs
Liu Yang
Sean Treichler
Thorsten Kurth
Keno Fischer
D. Barajas-Solano
...
Valentin Churavy
A. Tartakovsky
Michael Houston
P. Prabhat
George Karniadakis
AI4CE
84
39
0
29 Oct 2019
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods
Nur Sila Gulgec
Zheng Shi
Neil Deshmukh
S. Pakzad
Martin Takáč
53
6
0
28 Oct 2019
Coercing Machine Learning to Output Physically Accurate Results
Z. Geng
Dan Johnson
Ronald Fedkiw
3DH
46
37
0
21 Oct 2019
Data-Driven Deep Learning of Partial Differential Equations in Modal Space
Kailiang Wu
D. Xiu
127
153
0
15 Oct 2019
Solving Optical Tomography with Deep Learning
Yuwei Fan
Lexing Ying
59
17
0
10 Oct 2019
Data-driven discovery of free-form governing differential equations
Steven Atkinson
W. Subber
Liping Wang
Genghis Khan
Philippe Hawi
R. Ghanem
58
43
0
27 Sep 2019
A Multi-level procedure for enhancing accuracy of machine learning algorithms
K. Lye
Siddhartha Mishra
Roberto Molinaro
66
32
0
20 Sep 2019
Machine Discovery of Partial Differential Equations from Spatiotemporal Data
Ye Yuan
Junlin Li
Liang Li
Frank Jiang
Xiuchuan Tang
...
J. Gonçalves
H. Voss
Xiuting Li
J. Kurths
Han Ding
AI4CE
53
9
0
15 Sep 2019
HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints
M. Lutter
Boris Belousov
Kim D. Listmann
Debora Clever
Jan Peters
53
22
0
13 Sep 2019
Coarse-scale PDEs from fine-scale observations via machine learning
Seungjoon Lee
M. Kooshkbaghi
K. Spiliotis
Constantinos Siettos
Ioannis G. Kevrekidis
DiffM
AI4CE
50
83
0
12 Sep 2019
GMLS-Nets: A framework for learning from unstructured data
Nathaniel Trask
Ravi G. Patel
B. Gross
P. Atzberger
59
42
0
07 Sep 2019
Physics-Informed Machine Learning Models for Predicting the Progress of Reactive-Mixing
M. Mudunuru
S. Karra
45
11
0
28 Aug 2019
DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
61
70
0
13 Aug 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
69
33
0
11 Aug 2019
NeuPDE: Neural Network Based Ordinary and Partial Differential Equations for Modeling Time-Dependent Data
Yifan Sun
Linan Zhang
Hayden Schaeffer
AI4TS
72
92
0
08 Aug 2019
Classification of chaotic time series with deep learning
Nicolas Boullé
V. Dallas
Y. Nakatsukasa
D. Samaddar
AI4TS
29
56
0
26 Jul 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
134
8
0
24 Jul 2019
Stability selection enables robust learning of partial differential equations from limited noisy data
Suryanarayana Maddu
B. Cheeseman
I. Sbalzarini
Christian L. Müller
58
19
0
17 Jul 2019
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
65
381
0
10 Jul 2019
Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data
Xihaier Luo
A. Kareem
BDL
UQCV
42
28
0
08 Jul 2019
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
79
194
0
08 Jul 2019
SNODE: Spectral Discretization of Neural ODEs for System Identification
A. Quaglino
Marco Gallieri
Jonathan Masci
Jan Koutník
AI4TS
106
48
0
17 Jun 2019
Tackling Climate Change with Machine Learning
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4Cl
AI4CE
108
813
0
10 Jun 2019
Solving Electrical Impedance Tomography with Deep Learning
Yuwei Fan
Lexing Ying
99
104
0
06 Jun 2019
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CE
PINN
91
2,136
0
27 May 2019
Neural Jump Stochastic Differential Equations
Junteng Jia
Austin R. Benson
BDL
81
229
0
24 May 2019
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
118
675
0
21 May 2019
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks
Dongkun Zhang
Ling Guo
George Karniadakis
AI4CE
83
214
0
03 May 2019
On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method
H. Calandra
Serge Gratton
E. Riccietti
X. Vasseur
28
7
0
09 Apr 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
120
159
0
07 Mar 2019
Shallow Neural Networks for Fluid Flow Reconstruction with Limited Sensors
N. Benjamin Erichson
L. Mathelin
Z. Yao
Steven L. Brunton
Michael W. Mahoney
J. Nathan Kutz
AI4CE
61
34
0
20 Feb 2019
A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
Constantin Grigo
P. Koutsourelakis
AI4CE
129
26
0
11 Feb 2019
Differentiable Physics-informed Graph Networks
Sungyong Seo
Yan Liu
PINN
AI4CE
94
67
0
08 Feb 2019
Active Image Synthesis for Efficient Labeling
Jialei Chen
Yujia Xie
Kan Wang
Chuck Zhang
M. Vannan
Ben Wang
Z. Qian
MedIm
72
11
0
05 Feb 2019
Fast Neural Network Predictions from Constrained Aerodynamics Datasets
Cristina White
D. Ushizima
C. Farhat
AI4CE
55
18
0
26 Jan 2019
Pricing options and computing implied volatilities using neural networks
Shuaiqiang Liu
C. Oosterlee
S. Bohté
75
123
0
25 Jan 2019
Fleet Prognosis with Physics-informed Recurrent Neural Networks
R. Nascimento
F. Viana
27
52
0
16 Jan 2019
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
87
59
0
09 Dec 2018
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
89
553
0
30 Nov 2018
Networks for Nonlinear Diffusion Problems in Imaging
Simon Arridge
A. Hauptmann
DiffM
MedIm
70
18
0
29 Nov 2018
Recovery guarantees for polynomial approximation from dependent data with outliers
L. Ho
Hayden Schaeffer
Giang Tran
Rachel A. Ward
53
2
0
25 Nov 2018
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
112
1,649
0
25 Nov 2018
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
92
275
0
13 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
145
361
0
09 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
134
367
0
05 Nov 2018
Identification of physical processes via combined data-driven and data-assimilation methods
Haibin Chang
Dongxiao Zhang
67
32
0
29 Oct 2018
Using Deep Learning to Extend the Range of Air-Pollution Monitoring and Forecasting
Philipp Haehnel
Jakub Mareˇcek
Julien Monteil
Fearghal O'Donncha
AI4CE
29
39
0
22 Oct 2018
BCR-Net: a neural network based on the nonstandard wavelet form
Yuwei Fan
Cindy Orozco Bohorquez
Lexing Ying
71
47
0
20 Oct 2018
Nonlinear integro-differential operator regression with neural networks
Ravi G. Patel
O. Desjardins
64
18
0
19 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
68
58
0
11 Oct 2018
Previous
1
2
3
4
5
6
7
Next