ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.01642
  4. Cited By
Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

4 August 2017
Debidatta Dwibedi
Ishan Misra
M. Hebert
ArXiv (abs)PDFHTML

Papers citing "Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection"

24 / 274 papers shown
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
Sida Peng
Yuan Liu
Qi-Xing Huang
Hujun Bao
Xiaowei Zhou
3DPC
283
1,004
0
31 Dec 2018
Spatial Fusion GAN for Image Synthesis
Spatial Fusion GAN for Image Synthesis
Fangneng Zhan
Erik Cambria
Shijian Lu
291
158
0
14 Dec 2018
Capture Dense: Markerless Motion Capture Meets Dense Pose Estimation
Xiu Li
Yebin Liu
Hanbyul Joo
Qionghai Dai
Yaser Sheikh
3DH
151
3
0
05 Dec 2018
Weakly Supervised Silhouette-based Semantic Scene Change Detection
Weakly Supervised Silhouette-based Semantic Scene Change Detection
Ken Sakurada
Mikiya Shibuya
Weimin Wang
246
75
0
29 Nov 2018
Generate, Segment and Refine: Towards Generic Manipulation Segmentation
Generate, Segment and Refine: Towards Generic Manipulation SegmentationAAAI Conference on Artificial Intelligence (AAAI), 2018
Peng Zhou
Bor-Chun Chen
Xintong Han
Mahyar Najibi
Abhinav Shrivastava
Ser Nam Lim
L. Davis
186
145
0
24 Nov 2018
Structured Domain Randomization: Bridging the Reality Gap by
  Context-Aware Synthetic Data
Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data
Aayush Prakash
Shaad Boochoon
M. Brophy
David Acuna
Eric Cameracci
Gavriel State
Omer Shapira
Stan Birchfield
279
298
0
23 Oct 2018
Déjà Vu: an empirical evaluation of the memorization properties of
  ConvNets
Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Edouard Grave
134
18
0
17 Sep 2018
Synthetic Occlusion Augmentation with Volumetric Heatmaps for the 2018
  ECCV PoseTrack Challenge on 3D Human Pose Estimation
Synthetic Occlusion Augmentation with Volumetric Heatmaps for the 2018 ECCV PoseTrack Challenge on 3D Human Pose Estimation
István Sárándi
Timm Linder
Kai O. Arras
Bastian Leibe
3DH
288
41
0
13 Sep 2018
Geometric Image Synthesis
Geometric Image Synthesis
Hassan Abu Alhaija
Siva Karthik Mustikovela
Andreas Geiger
Carsten Rother
3DVGAN
181
47
0
12 Sep 2018
Recent Advances in Object Detection in the Age of Deep Convolutional
  Neural Networks
Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
Shivang Agarwal
Jean Ogier du Terrail
F. Jurie
ObjD
351
138
0
10 Sep 2018
Deep Learning for Generic Object Detection: A Survey
Deep Learning for Generic Object Detection: A Survey
Tianpeng Liu
Wanli Ouyang
Xiaogang Wang
Paul Fieguth
Jie Chen
Xinwang Liu
M. Pietikäinen
ObjDVLMOOD
729
2,673
0
06 Sep 2018
On the Importance of Visual Context for Data Augmentation in Scene
  Understanding
On the Importance of Visual Context for Data Augmentation in Scene Understanding
Nikita Dvornik
Julien Mairal
Cordelia Schmid
239
91
0
06 Sep 2018
How Robust is 3D Human Pose Estimation to Occlusion?
How Robust is 3D Human Pose Estimation to Occlusion?
István Sárándi
Timm Linder
Kai O. Arras
Bastian Leibe
3DH
216
74
0
28 Aug 2018
Human-centric Indoor Scene Synthesis Using Stochastic Grammar
Human-centric Indoor Scene Synthesis Using Stochastic Grammar
Siyuan Qi
Yixin Zhu
Siyuan Huang
Jian Ren
Song-Chun Zhu
3DV
163
193
0
25 Aug 2018
Deep Leaf Segmentation Using Synthetic Data
Deep Leaf Segmentation Using Synthetic Data
Daniel Ward
Peyman Moghadam
N. Hudson
275
112
0
28 Jul 2018
Synthetically Trained Icon Proposals for Parsing and Summarizing
  Infographics
Synthetically Trained Icon Proposals for Parsing and Summarizing Infographics
Spandan Madan
Zoya Bylinskii
Matthew Tancik
Adrià Recasens
Kimberli Zhong
Sami Alsheikh
Hanspeter Pfister
A. Oliva
F. Durand
DiffM
130
15
0
27 Jul 2018
Modeling Visual Context is Key to Augmenting Object Detection Datasets
Modeling Visual Context is Key to Augmenting Object Detection DatasetsEuropean Conference on Computer Vision (ECCV), 2018
Nikita Dvornik
Julien Mairal
Cordelia Schmid
270
266
0
19 Jul 2018
Learning Object Localization and 6D Pose Estimation from Simulation and
  Weakly Labeled Real Images
Learning Object Localization and 6D Pose Estimation from Simulation and Weakly Labeled Real Images
Jean-Philippe Mercier
Chaitanya Mitash
Philippe Giguère
Abdeslam Boularias
3DPC
194
10
0
18 Jun 2018
Training Deep Networks with Synthetic Data: Bridging the Reality Gap by
  Domain Randomization
Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization
Jonathan Tremblay
Aayush Prakash
David Acuna
M. Brophy
Varun Jampani
Cem Anil
Thang To
Eric Cameracci
Shaad Boochoon
Stan Birchfield
OOD
448
932
0
18 Apr 2018
Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose
  Estimation
Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose Estimation
Markus Oberweger
Mahdi Rad
Vincent Lepetit
3DH3DPC
311
239
0
11 Apr 2018
Learning to Segment via Cut-and-Paste
Learning to Segment via Cut-and-Paste
Tal Remez
Jonathan Huang
Matthew A. Brown
189
106
0
16 Mar 2018
Target Driven Instance Detection
Target Driven Instance Detection
Phil Ammirato
Cheng-Yang Fu
Mykhailo Shvets
Jana Kosecka
Alexander C. Berg
316
28
0
13 Mar 2018
What Makes Good Synthetic Training Data for Learning Disparity and
  Optical Flow Estimation?
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
N. Mayer
Eddy Ilg
Philipp Fischer
C. Hazirbas
Zorah Lähner
Alexey Dosovitskiy
Thomas Brox
OOD
222
220
0
19 Jan 2018
On Pre-Trained Image Features and Synthetic Images for Deep Learning
On Pre-Trained Image Features and Synthetic Images for Deep Learning
Stefan Hinterstoißer
Vincent Lepetit
Paul Wohlhart
K. Konolige
VLMObjD
246
243
0
29 Oct 2017
Previous
123456
Page 6 of 6