ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.03498
  4. Cited By
Neural Expectation Maximization
v1v2 (latest)

Neural Expectation Maximization

Neural Information Processing Systems (NeurIPS), 2017
11 August 2017
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
    OCL
ArXiv (abs)PDFHTML

Papers citing "Neural Expectation Maximization"

38 / 188 papers shown
Title
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Exploiting Spatial Invariance for Scalable Unsupervised Object TrackingAAAI Conference on Artificial Intelligence (AAAI), 2019
Eric Crawford
Joelle Pineau
305
67
0
20 Nov 2019
IKEA Furniture Assembly Environment for Long-Horizon Complex
  Manipulation Tasks
IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation TasksIEEE International Conference on Robotics and Automation (ICRA), 2019
Youngwoon Lee
E. Hu
Zhengyu Yang
Alexander Yin
Joseph J. Lim
295
140
0
17 Nov 2019
Entity Abstraction in Visual Model-Based Reinforcement Learning
Entity Abstraction in Visual Model-Based Reinforcement LearningConference on Robot Learning (CoRL), 2019
Rishi Veerapaneni
John D. Co-Reyes
Michael Chang
Michael Janner
Chelsea Finn
Jiajun Wu
J. Tenenbaum
Sergey Levine
OCLOffRL
425
197
0
28 Oct 2019
R-SQAIR: Relational Sequential Attend, Infer, Repeat
R-SQAIR: Relational Sequential Attend, Infer, Repeat
Aleksandar Stanić
Jürgen Schmidhuber
164
31
0
11 Oct 2019
Structured Object-Aware Physics Prediction for Video Modeling and
  Planning
Structured Object-Aware Physics Prediction for Video Modeling and PlanningInternational Conference on Learning Representations (ICLR), 2019
Jannik Kossen
Karl Stelzner
Marcel Hussing
C. Voelcker
Kristian Kersting
OCL
219
73
0
06 Oct 2019
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCLDRL
403
143
0
06 Oct 2019
LAVAE: Disentangling Location and Appearance
LAVAE: Disentangling Location and Appearance
Andrea Dittadi
Ole Winther
OCLBDLDRL
237
6
0
25 Sep 2019
Uncover the Ground-Truth Relations in Distant Supervision: A Neural
  Expectation-Maximization Framework
Uncover the Ground-Truth Relations in Distant Supervision: A Neural Expectation-Maximization FrameworkConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Jiasi Chen
Richong Zhang
Yongyi Mao
Hongyu Guo
Jie Xu
NoLaBDL
144
10
0
12 Sep 2019
GENESIS: Generative Scene Inference and Sampling with Object-Centric
  Latent Representations
GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Martin Engelcke
Adam R. Kosiorek
Oiwi Parker Jones
Ingmar Posner
OCL
391
325
0
30 Jul 2019
Information Competing Process for Learning Diversified Representations
Information Competing Process for Learning Diversified RepresentationsNeural Information Processing Systems (NeurIPS), 2019
Jie Hu
Rongrong Ji
Shengchuan Zhang
Xiaoshuai Sun
QiXiang Ye
Chia-Wen Lin
Q. Tian
355
16
0
04 Jun 2019
A Perspective on Objects and Systematic Generalization in Model-Based RL
A Perspective on Objects and Systematic Generalization in Model-Based RL
Sjoerd van Steenkiste
Klaus Greff
Jürgen Schmidhuber
OCLOffRL
194
31
0
03 Jun 2019
End to end learning and optimization on graphs
End to end learning and optimization on graphsNeural Information Processing Systems (NeurIPS), 2019
Bryan Wilder
Eric Ewing
B. Dilkina
Milind Tambe
GNN
225
117
0
31 May 2019
Emergence of Object Segmentation in Perturbed Generative Models
Emergence of Object Segmentation in Perturbed Generative ModelsNeural Information Processing Systems (NeurIPS), 2019
Adam Bielski
Paolo Favaro
264
103
0
29 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?Neural Information Processing Systems (NeurIPS), 2019
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
261
216
0
29 May 2019
Object Discovery with a Copy-Pasting GAN
Object Discovery with a Copy-Pasting GAN
Relja Arandjelović
Andrew Zisserman
196
58
0
27 May 2019
Unsupervised Intuitive Physics from Past Experiences
Unsupervised Intuitive Physics from Past Experiences
Sébastien Ehrhardt
Áron Monszpart
Niloy J. Mitra
Andrea Vedaldi
OODPINNAI4CESSL
169
2
0
26 May 2019
Unsupervised and interpretable scene discovery with
  Discrete-Attend-Infer-Repeat
Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
Duo Wang
M. Jamnik
Pietro Lio
BDLOCL
158
5
0
14 Mar 2019
Unsupervised Discovery of Parts, Structure, and Dynamics
Unsupervised Discovery of Parts, Structure, and Dynamics
Zhenjia Xu
Zhijian Liu
Chen Sun
Kevin Patrick Murphy
William T. Freeman
J. Tenenbaum
Jiajun Wu
OCL
161
61
0
12 Mar 2019
Interpreting and Understanding Graph Convolutional Neural Network using
  Gradient-based Attribution Method
Interpreting and Understanding Graph Convolutional Neural Network using Gradient-based Attribution Method
Shangsheng Xie
Mingming Lu
FAttGNN
153
18
0
09 Mar 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational InferenceInternational Conference on Machine Learning (ICML), 2019
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCLSSL
446
541
0
01 Mar 2019
Spatial Mixture Models with Learnable Deep Priors for Perceptual
  Grouping
Spatial Mixture Models with Learnable Deep Priors for Perceptual Grouping
Jinyang Yuan
Bin Li
Xiangyang Xue
OCL
137
12
0
07 Feb 2019
MONet: Unsupervised Scene Decomposition and Representation
MONet: Unsupervised Scene Decomposition and Representation
Christopher P. Burgess
Loic Matthey
Nicholas Watters
Rishabh Kabra
I. Higgins
M. Botvinick
Alexander Lerchner
OCL
354
568
0
22 Jan 2019
Reasoning About Physical Interactions with Object-Oriented Prediction
  and Planning
Reasoning About Physical Interactions with Object-Oriented Prediction and Planning
Michael Janner
Sergey Levine
William T. Freeman
J. Tenenbaum
Chelsea Finn
Jiajun Wu
OCL
226
133
0
28 Dec 2018
Reconciling meta-learning and continual learning with online mixtures of
  tasks
Reconciling meta-learning and continual learning with online mixtures of tasks
Ghassen Jerfel
Erin Grant
Thomas Griffiths
Katherine A. Heller
FedMLCLLBDL
339
12
0
14 Dec 2018
GAN-EM: GAN based EM learning framework
GAN-EM: GAN based EM learning framework
Wentian Zhao
Shaojie Wang
Zhihuai Xie
Jing Shi
Chenliang Xu
VLMGAN
79
14
0
02 Dec 2018
Improving Span-based Question Answering Systems with Coarsely Labeled
  Data
Improving Span-based Question Answering Systems with Coarsely Labeled Data
Youlong Cheng
Ming-Wei Chang
HyoukJoong Lee
Ankur P. Parikh
Mingsheng Hong
Blake A. Hechtman
128
1
0
05 Nov 2018
Investigating Object Compositionality in Generative Adversarial Networks
Investigating Object Compositionality in Generative Adversarial Networks
Sjoerd van Steenkiste
Karol Kurach
Jürgen Schmidhuber
Sylvain Gelly
GANOCL
285
20
0
17 Oct 2018
Tracking by Animation: Unsupervised Learning of Multi-Object Attentive
  Trackers
Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers
Zhen He
Jian Li
Daxue Liu
Hangen He
David Barber
VOT
211
57
0
10 Sep 2018
Superpixel Sampling Networks
Superpixel Sampling Networks
Varun Jampani
Deqing Sun
Ming-Yuan Liu
Ming-Hsuan Yang
Jan Kautz
SSeg
135
260
0
26 Jul 2018
Learning Neural Models for End-to-End Clustering
Learning Neural Models for End-to-End Clustering
B. Meier
Ismail Elezi
Mohammadreza Amirian
Oliver Durr
Thilo Stadelmann
SSL
139
17
0
11 Jul 2018
Learning to Decompose and Disentangle Representations for Video
  Prediction
Learning to Decompose and Disentangle Representations for Video Prediction
Jun-Ting Hsieh
Bingbin Liu
De-An Huang
Li Fei-Fei
Juan Carlos Niebles
DRL
354
316
0
11 Jun 2018
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
BDL
339
266
0
05 Jun 2018
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera
  Motion, Optical Flow and Motion Segmentation
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
Anurag Ranjan
Varun Jampani
Lukas Balles
Kihwan Kim
Deqing Sun
Jonas Wulff
Michael J. Black
SSL
322
619
0
24 May 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
217
546
0
18 Apr 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of
  Objects and their Interactions
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their InteractionsInternational Conference on Learning Representations (ICLR), 2018
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDLOCLDRL
384
297
0
28 Feb 2018
One Big Net For Everything
One Big Net For Everything
Jürgen Schmidhuber
CLL
156
34
0
24 Feb 2018
Taking Visual Motion Prediction To New Heightfields
Taking Visual Motion Prediction To New HeightfieldsComputer Vision and Image Understanding (CVIU), 2017
Sébastien Ehrhardt
Áron Monszpart
Niloy Mitra
Andrea Vedaldi
128
23
0
22 Dec 2017
Recurrent Ladder Networks
Recurrent Ladder Networks
Isabeau Prémont-Schwarz
Alexander Ilin
T. Hao
Antti Rasmus
Rinu Boney
Harri Valpola
292
41
0
28 Jul 2017
Previous
1234