ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.03498
  4. Cited By
Neural Expectation Maximization

Neural Expectation Maximization

11 August 2017
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
    OCL
ArXivPDFHTML

Papers citing "Neural Expectation Maximization"

23 / 73 papers shown
Title
Slot Contrastive Networks: A Contrastive Approach for Representing
  Objects
Slot Contrastive Networks: A Contrastive Approach for Representing Objects
Evan Racah
Sarath Chandar
OCL
DRL
21
14
0
18 Jul 2020
Learning Physical Graph Representations from Visual Scenes
Learning Physical Graph Representations from Visual Scenes
Daniel M. Bear
Chaofei Fan
Damian Mrowca
Yunzhu Li
S. Alter
...
Jeremy Schwartz
Li Fei-Fei
Jiajun Wu
J. Tenenbaum
Daniel L. K. Yamins
SSL
GNN
SSeg
AI4CE
45
79
0
22 Jun 2020
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
  a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
Despoina Paschalidou
Luc van Gool
Andreas Geiger
3DV
OCL
34
107
0
02 Apr 2020
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial
  Attention and Decomposition
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition
Zhixuan Lin
Yi-Fu Wu
Skand Peri
Weihao Sun
Gautam Singh
Fei Deng
Jindong Jiang
Sungjin Ahn
BDL
OCL
3DPC
45
246
0
08 Jan 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
46
999
0
22 Dec 2019
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Eric Crawford
Joelle Pineau
50
66
0
20 Nov 2019
IKEA Furniture Assembly Environment for Long-Horizon Complex
  Manipulation Tasks
IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks
Youngwoon Lee
E. Hu
Zhengyu Yang
Alexander Yin
Joseph J. Lim
31
121
0
17 Nov 2019
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
37
132
0
06 Oct 2019
LAVAE: Disentangling Location and Appearance
LAVAE: Disentangling Location and Appearance
Andrea Dittadi
Ole Winther
OCL
BDL
DRL
12
6
0
25 Sep 2019
A Perspective on Objects and Systematic Generalization in Model-Based RL
A Perspective on Objects and Systematic Generalization in Model-Based RL
Sjoerd van Steenkiste
Klaus Greff
Jürgen Schmidhuber
OCL
OffRL
17
31
0
03 Jun 2019
Emergence of Object Segmentation in Perturbed Generative Models
Emergence of Object Segmentation in Perturbed Generative Models
Adam Bielski
Paolo Favaro
25
99
0
29 May 2019
Object Discovery with a Copy-Pasting GAN
Object Discovery with a Copy-Pasting GAN
Relja Arandjelović
Andrew Zisserman
27
57
0
27 May 2019
Unsupervised and interpretable scene discovery with
  Discrete-Attend-Infer-Repeat
Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
Duo Wang
M. Jamnik
Pietro Lió
BDL
OCL
26
5
0
14 Mar 2019
Unsupervised Discovery of Parts, Structure, and Dynamics
Unsupervised Discovery of Parts, Structure, and Dynamics
Zhenjia Xu
Zhijian Liu
Chen Sun
Kevin Patrick Murphy
William T. Freeman
J. Tenenbaum
Jiajun Wu
OCL
30
61
0
12 Mar 2019
Interpreting and Understanding Graph Convolutional Neural Network using
  Gradient-based Attribution Method
Interpreting and Understanding Graph Convolutional Neural Network using Gradient-based Attribution Method
Shangsheng Xie
Mingming Lu
FAtt
GNN
36
16
0
09 Mar 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCL
SSL
13
499
0
01 Mar 2019
Learning Neural Models for End-to-End Clustering
Learning Neural Models for End-to-End Clustering
B. Meier
Ismail Elezi
Mohammadreza Amirian
Oliver Durr
Thilo Stadelmann
SSL
22
16
0
11 Jul 2018
Learning to Decompose and Disentangle Representations for Video
  Prediction
Learning to Decompose and Disentangle Representations for Video Prediction
Jun-Ting Hsieh
Bingbin Liu
De-An Huang
Li Fei-Fei
Juan Carlos Niebles
DRL
138
305
0
11 Jun 2018
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
BDL
29
256
0
05 Jun 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
15
522
0
18 Apr 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of
  Objects and their Interactions
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDL
OCL
DRL
34
290
0
28 Feb 2018
One Big Net For Everything
One Big Net For Everything
Jürgen Schmidhuber
CLL
26
34
0
24 Feb 2018
Recurrent Ladder Networks
Recurrent Ladder Networks
Isabeau Prémont-Schwarz
Alexander Ilin
T. Hao
Antti Rasmus
Rinu Boney
Harri Valpola
30
41
0
28 Jul 2017
Previous
12