ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.06509
  4. Cited By
ProbFlow: Joint Optical Flow and Uncertainty Estimation

ProbFlow: Joint Optical Flow and Uncertainty Estimation

22 August 2017
Anne S. Wannenwetsch
Margret Keuper
Stefan Roth
ArXivPDFHTML

Papers citing "ProbFlow: Joint Optical Flow and Uncertainty Estimation"

13 / 13 papers shown
Title
MAC-VO: Metrics-aware Covariance for Learning-based Stereo Visual Odometry
MAC-VO: Metrics-aware Covariance for Learning-based Stereo Visual Odometry
Yuheng Qiu
Yutian Chen
Zihao Zhang
Wenshan Wang
Sebastian A. Scherer
60
1
0
13 Mar 2025
Uncertainty Quantification Metrics for Deep Regression
Uncertainty Quantification Metrics for Deep Regression
Simon Kristoffersson Lind
Ziliang Xiong
Per-Erik Forssén
Volker Kruger
UQCV
42
3
0
07 May 2024
A survey on deep learning in medical image registration: new
  technologies, uncertainty, evaluation metrics, and beyond
A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond
Junyu Chen
Yihao Liu
Shuwen Wei
Zhangxing Bian
Shalini Subramanian
A. Carass
Jerry L. Prince
Yong Du
OOD
50
36
0
28 Jul 2023
Integrating Uncertainty into Neural Network-based Speech Enhancement
Integrating Uncertainty into Neural Network-based Speech Enhancement
Hu Fang
Dennis Becker
S. Wermter
Timo Gerkmann
UQCV
37
2
0
15 May 2023
Unsupervised confidence for LiDAR depth maps and applications
Unsupervised confidence for LiDAR depth maps and applications
Andrea Conti
Matteo Poggi
Filippo Aleotti
S. Mattoccia
3DV
34
12
0
06 Oct 2022
Probabilistic Warp Consistency for Weakly-Supervised Semantic
  Correspondences
Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences
Prune Truong
Martin Danelljan
Feng Yu
Luc Van Gool
32
31
0
08 Mar 2022
Learning Accurate Dense Correspondences and When to Trust Them
Learning Accurate Dense Correspondences and When to Trust Them
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
3DH
3DPC
79
129
0
05 Jan 2021
On the uncertainty of self-supervised monocular depth estimation
On the uncertainty of self-supervised monocular depth estimation
Matteo Poggi
Filippo Aleotti
Fabio Tosi
S. Mattoccia
UQCV
MDE
33
263
0
13 May 2020
SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and
  Robust Interpolation for Scene Flow Estimation
SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation
René Schuster
Oliver Wasenmüller
C. Unger
G. Kuschk
D. Stricker
37
18
0
26 Feb 2019
Hierarchical Discrete Distribution Decomposition for Match Density
  Estimation
Hierarchical Discrete Distribution Decomposition for Match Density Estimation
Zhichao Yin
Trevor Darrell
Feng Yu
3DV
36
243
0
15 Dec 2018
FlowFields++: Accurate Optical Flow Correspondences Meet Robust
  Interpolation
FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation
René Schuster
C. Bailer
Oliver Wasenmüller
D. Stricker
27
22
0
09 May 2018
Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow
Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow
Eddy Ilg
Özgün Çiçek
Silvio Galesso
Aaron Klein
Osama Makansi
Frank Hutter
Thomas Brox
UQCV
40
220
0
20 Feb 2018
The Fast Bilateral Solver
The Fast Bilateral Solver
Jonathan T. Barron
Ben Poole
186
371
0
10 Nov 2015
1