Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.07469
Cited By
DGM: A deep learning algorithm for solving partial differential equations
24 August 2017
Justin A. Sirignano
K. Spiliopoulos
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DGM: A deep learning algorithm for solving partial differential equations"
50 / 315 papers shown
Title
Solving Nonlinear PDEs with Sparse Radial Basis Function Networks
Zihan Shao
Konstantin Pieper
Xiaochuan Tian
33
0
0
12 May 2025
Reverse-BSDE Monte Carlo
Jairon H. N. Batista
Flávio B. Gonçalves
Yuri F. Saporito
Rodrigo S. Targino
DiffM
36
0
0
11 May 2025
Physics-informed solution reconstruction in elasticity and heat transfer using the explicit constraint force method
Conor Rowan
K. Maute
Alireza Doostan
AI4CE
53
0
0
08 May 2025
Error Analysis of Deep PDE Solvers for Option Pricing
Jasper Rou
53
0
0
08 May 2025
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
65
0
0
02 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
83
0
0
25 Apr 2025
From Equations to Insights: Unraveling Symbolic Structures in PDEs with LLMs
Rohan Bhatnagar
Ling Liang
Krish Patel
Haizhao Yang
36
0
0
13 Mar 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
73
2
0
08 Mar 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
65
0
0
21 Feb 2025
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
Yuan Chen
Abdul Khaliq
Khaled M. Furati
AI4CE
66
0
0
20 Feb 2025
Machine learning for modelling unstructured grid data in computational physics: a review
Sibo Cheng
Marc Bocquet
Weiping Ding
Tobias S. Finn
Rui Fu
...
Yong Zeng
Mingrui Zhang
Hao Zhou
Kewei Zhu
Rossella Arcucci
PINN
AI4CE
119
0
0
13 Feb 2025
Learning Discontinuous Galerkin Solutions to Elliptic Problems via Small Linear Convolutional Neural Networks
A. Celaya
Yimo Wang
David T. Fuentes
Beatrice Riviere
41
0
0
12 Feb 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
56
1
0
10 Feb 2025
Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
Yueyang Wang
Kejun Tang
Xili Wang
Xiaoliang Wan
Weiqing Ren
Chao Yang
40
0
0
28 Jan 2025
ELM-DeepONets: Backpropagation-Free Training of Deep Operator Networks via Extreme Learning Machines
Hwijae Son
56
0
0
17 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
82
1
0
15 Dec 2024
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min Lin
Kenji Kawaguchi
224
6
0
27 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
Convergence Guarantees for Neural Network-Based Hamilton-Jacobi Reachability
William Hofgard
31
2
0
03 Oct 2024
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
54
2
0
03 Oct 2024
Model Comparisons: XNet Outperforms KAN
Xin Li
Zhihong Xia
Xiaotao Zheng
47
0
0
02 Oct 2024
Cauchy activation function and XNet
Xin Li
Zhihong Xia
Hongkun Zhang
53
4
0
28 Sep 2024
Harnessing physics-informed operators for high-dimensional reliability analysis problems
N Navaneeth
Tushar
Souvik Chakraborty
AI4CE
45
0
0
07 Sep 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
30
0
0
21 Aug 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
68
2
0
04 Jul 2024
Efficient Shallow Ritz Method For 1D Diffusion-Reaction Problems
Zhiqiang Cai
Anastassia Doktorova
Robert D. Falgout
César Herrera
28
0
0
01 Jul 2024
An Advanced Physics-Informed Neural Operator for Comprehensive Design Optimization of Highly-Nonlinear Systems: An Aerospace Composites Processing Case Study
Milad Ramezankhani
A. Deodhar
Rishi Parekh
Dagnachew Birru
AI4CE
50
3
0
20 Jun 2024
HDNet: Physics-Inspired Neural Network for Flow Estimation based on Helmholtz Decomposition
Miao Qi
R. Idoughi
Wolfgang Heidrich
PINN
MDE
28
1
0
12 Jun 2024
Solving Poisson Equations using Neural Walk-on-Spheres
Hong Chul Nam
Julius Berner
Anima Anandkumar
47
3
0
05 Jun 2024
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
41
3
0
05 Jun 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
41
3
0
29 May 2024
Convergence of the Deep Galerkin Method for Mean Field Control Problems
William Hofgard
Jingruo Sun
Asaf Cohen
AI4CE
39
3
0
22 May 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
45
7
0
08 May 2024
A score-based particle method for homogeneous Landau equation
Yan Huang
Li Wang
OT
60
5
0
08 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
45
2
0
04 Mar 2024
A time-stepping deep gradient flow method for option pricing in (rough) diffusion models
A. Papapantoleon
Jasper Rou
26
2
0
01 Mar 2024
Learning solution operators of PDEs defined on varying domains via MIONet
Shanshan Xiao
Pengzhan Jin
Yifa Tang
55
3
0
23 Feb 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
39
5
0
19 Jan 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models
E. Georgoulis
A. Papapantoleon
Costas Smaragdakis
33
7
0
12 Jan 2024
Generating synthetic data for neural operators
Erisa Hasani
Rachel A. Ward
AI4CE
70
8
0
04 Jan 2024
Physics Informed Neural Network for Option Pricing
Ashish Dhiman
Yibei Hu
16
3
0
10 Dec 2023
GIT-Net: Generalized Integral Transform for Operator Learning
Chao Wang
Alexandre H. Thiery
AI4CE
37
0
0
05 Dec 2023
Adaptive importance sampling for Deep Ritz
Xiaoliang Wan
Tao Zhou
Yuancheng Zhou
29
2
0
26 Oct 2023
Time integration schemes based on neural networks for solving partial differential equations on coarse grids
Xinxin Yan
Zhideng Zhou
Xiaohan Cheng
Xiaolei Yang
AI4TS
AI4CE
28
0
0
16 Oct 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Latent assimilation with implicit neural representations for unknown dynamics
Zhuoyuan Li
Bin Dong
Pingwen Zhang
AI4CE
24
3
0
18 Sep 2023
Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation
Yuesheng Xu
Taishan Zeng
AI4CE
32
4
0
14 Sep 2023
Solving multiscale elliptic problems by sparse radial basis function neural networks
Zhiwen Wang
Minxin Chen
Jingrun Chen
57
15
0
01 Sep 2023
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
30
1
0
07 Aug 2023
1
2
3
4
5
6
7
Next