Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.07469
Cited By
DGM: A deep learning algorithm for solving partial differential equations
24 August 2017
Justin A. Sirignano
K. Spiliopoulos
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DGM: A deep learning algorithm for solving partial differential equations"
50 / 315 papers shown
Title
HOPE: High-order Polynomial Expansion of Black-box Neural Networks
Tingxiong Xiao
Weihang Zhang
Yuxiao Cheng
J. Suo
39
2
0
17 Jul 2023
Neural Stream Functions
Skylar W. Wurster
Hanqi Guo
Tom Peterka
Han-Wei Shen
26
0
0
16 Jul 2023
Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms
R. Balkin
Héctor D. Ceniceros
Ruimeng Hu
26
2
0
12 Jul 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
28
6
0
06 Jul 2023
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
21
2
0
01 Jul 2023
Addressing Discontinuous Root-Finding for Subsequent Differentiability in Machine Learning, Inverse Problems, and Control
Dan Johnson
Ronald Fedkiw
AI4CE
36
2
0
21 Jun 2023
A Finite Expression Method for Solving High-Dimensional Committor Problems
Zezheng Song
M. Cameron
Haizhao Yang
23
6
0
21 Jun 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
37
4
0
21 May 2023
Global Convergence of Deep Galerkin and PINNs Methods for Solving Partial Differential Equations
Deqing Jiang
Justin A. Sirignano
Samuel N. Cohen
24
6
0
10 May 2023
A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks
Marc Finzi
Andres Potapczynski
M. Choptuik
A. Wilson
26
12
0
28 Apr 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
31
10
0
27 Apr 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
45
5
0
26 Apr 2023
In-Context Operator Learning with Data Prompts for Differential Equation Problems
Liu Yang
Siting Liu
Tingwei Meng
Stanley J. Osher
40
60
0
17 Apr 2023
EPINN-NSE: Enhanced Physics-Informed Neural Networks for Solving Navier-Stokes Equations
Ayoub Farkane
Mounir Ghogho
M. Oudani
M. Boutayeb
PINN
28
5
0
07 Apr 2023
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
32
2
0
03 Apr 2023
Multilevel CNNs for Parametric PDEs
Cosmas Heiß
Ingo Gühring
Martin Eigel
AI4CE
30
8
0
01 Apr 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
39
9
0
28 Mar 2023
GNN-based physics solver for time-independent PDEs
R. J. Gladstone
H. Rahmani
V. Suryakumar
Hadi Meidani
M. DÉlia
A. Zareei
AI4CE
27
15
0
28 Mar 2023
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
26
1
0
22 Mar 2023
Deep Learning for Mean Field Optimal Transport
Sebastian Baudelet
Brieuc Frénais
Mathieu Laurière
Amal Machtalay
Yuchen Zhu
OT
28
2
0
28 Feb 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
18
5
0
25 Feb 2023
Physics informed WNO
N. N.
Tapas Tripura
S. Chakraborty
33
28
0
12 Feb 2023
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
38
7
0
11 Feb 2023
A conceptual model for leaving the data-centric approach in machine learning
S. Scher
Bernhard C. Geiger
Simone Kopeinik
A. Trugler
Dominik Kowald
39
0
0
07 Feb 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
34
1
0
07 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
37
18
0
03 Feb 2023
Learning PDE Solution Operator for Continuous Modeling of Time-Series
Yesom Park
Jaemoo Choi
Changyeon Yoon
Changhoon Song
Myung-joo Kang
AI4TS
AI4CE
27
3
0
02 Feb 2023
Experimental observation on a low-rank tensor model for eigenvalue problems
Jun Hu
Pengzhan Jin
19
2
0
01 Feb 2023
Bridging Physics-Informed Neural Networks with Reinforcement Learning: Hamilton-Jacobi-Bellman Proximal Policy Optimization (HJBPPO)
Amartya Mukherjee
Jun Liu
20
11
0
01 Feb 2023
Computability of Optimizers
Yunseok Lee
Holger Boche
Gitta Kutyniok
35
16
0
15 Jan 2023
Learning Partial Differential Equations by Spectral Approximates of General Sobolev Spaces
Juan Esteban Suarez Cardona
Phil-Alexander Hofmann
Michael Hecht
32
3
0
12 Jan 2023
New Designed Loss Functions to Solve Ordinary Differential Equations with Artificial Neural Network
Xiao Xiong
21
0
0
29 Dec 2022
Enhancing Neural Network Differential Equation Solvers
Matthew J. H. Wright
21
1
0
28 Dec 2022
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
26
22
0
17 Dec 2022
AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions
F. Bonnet
Jocelyn Ahmed Mazari
Paola Cinnella
Patrick Gallinari
AI4CE
33
55
0
15 Dec 2022
Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations
Wuzhe Xu
Yulong Lu
Li Wang
32
33
0
09 Dec 2022
Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations
Yemo Li
Yiwen Pang
Bin Shan
AI4CE
31
3
0
08 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
23
34
0
06 Dec 2022
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators
Ha Maust
Zong-Yi Li
Yixuan Wang
Daniel Leibovici
O. Bruno
T. Hou
Anima Anandkumar
AI4CE
29
11
0
29 Nov 2022
Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power
Juan Esteban Suarez Cardona
Michael Hecht
29
4
0
23 Nov 2022
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
35
0
0
21 Nov 2022
Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs
Seungchan Ko
S. Yun
Youngjoon Hong
30
5
0
16 Nov 2022
SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition
Yihang Gao
Ka Chun Cheung
Michael K. Ng
41
15
0
16 Nov 2022
Gradient-enhanced deep neural network approximations
Xiaodong Feng
Li Zeng
UQCV
34
5
0
08 Nov 2022
A Deep Double Ritz Method (D
2
^2
2
RM) for solving Partial Differential Equations using Neural Networks
C. Uriarte
David Pardo
I. Muga
J. Muñoz‐Matute
49
18
0
07 Nov 2022
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
46
81
0
02 Nov 2022
Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows
Raphael Pellegrin
Blake Bullwinkel
M. Mattheakis
P. Protopapas
PINN
AI4CE
34
9
0
01 Nov 2022
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
29
2
0
28 Oct 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
32
18
0
27 Oct 2022
Mean-field neural networks: learning mappings on Wasserstein space
H. Pham
X. Warin
37
13
0
27 Oct 2022
Previous
1
2
3
4
5
6
7
Next