ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.00147
  4. Cited By
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in
  Misspecified Settings
v1v2 (latest)

Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings

1 September 2017
Motonobu Kanagawa
Bharath K. Sriperumbudur
Kenji Fukumizu
ArXiv (abs)PDFHTML

Papers citing "Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings"

31 / 31 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
122
2
0
26 Apr 2025
Nested Expectations with Kernel Quadrature
Nested Expectations with Kernel Quadrature
Zonghao Chen
Masha Naslidnyk
F. Briol
67
2
0
25 Feb 2025
Conditional Bayesian Quadrature
Conditional Bayesian Quadrature
Zonghao Chen
Masha Naslidnyk
Arthur Gretton
F. Briol
TPM
84
3
0
24 Jun 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization
  via Probabilistic Lifting
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
68
3
0
18 Apr 2024
Impact of Computation in Integral Reinforcement Learning for
  Continuous-Time Control
Impact of Computation in Integral Reinforcement Learning for Continuous-Time Control
Wenhan Cao
Wei Pan
58
0
0
27 Feb 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
70
5
0
22 Nov 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
167
7
0
20 Jul 2023
Bayesian Numerical Integration with Neural Networks
Bayesian Numerical Integration with Neural Networks
Katharina Ott
Michael Tiemann
Philipp Hennig
F. Briol
BDL
58
3
0
22 May 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
127
15
0
27 Jan 2023
Interpolation with the polynomial kernels
Interpolation with the polynomial kernels
G. Elefante
W. Erb
Francesco Marchetti
E. Perracchione
D. Poggiali
G. Santin
80
1
0
15 Dec 2022
Error analysis for a statistical finite element method
Error analysis for a statistical finite element method
Toni Karvonen
F. Cirak
Mark Girolami
17
4
0
19 Jan 2022
Positively Weighted Kernel Quadrature via Subsampling
Positively Weighted Kernel Quadrature via Subsampling
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
105
26
0
20 Jul 2021
Sparse solutions of the kernel herding algorithm by improved gradient
  approximation
Sparse solutions of the kernel herding algorithm by improved gradient approximation
Kazuma Tsuji
Ken’ichiro Tanaka
56
0
0
17 May 2021
Deep Bayesian Quadrature Policy Optimization
Deep Bayesian Quadrature Policy Optimization
Akella Ravi Tej
Kamyar Azizzadenesheli
Mohammad Ghavamzadeh
Anima Anandkumar
Yisong Yue
48
5
0
28 Jun 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
101
42
0
01 Apr 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Convergence Guarantees for Gaussian Process Means With Misspecified
  Likelihoods and Smoothness
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
82
56
0
29 Jan 2020
Geometric Rates of Convergence for Kernel-based Sampling Algorithms
Geometric Rates of Convergence for Kernel-based Sampling Algorithms
Rajiv Khanna
Liam Hodgkinson
Michael W. Mahoney
39
2
0
19 Jul 2019
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Motonobu Kanagawa
Philipp Hennig
87
36
0
24 May 2019
Automated Model Selection with Bayesian Quadrature
Automated Model Selection with Bayesian Quadrature
Henry Chai
Jean-François Ton
Roman Garnett
Michael A. Osborne
80
11
0
26 Feb 2019
On the positivity and magnitudes of Bayesian quadrature weights
On the positivity and magnitudes of Bayesian quadrature weights
Toni Karvonen
Motonobu Kanagawa
Simo Särkkä
56
14
0
20 Dec 2018
Improved Calibration of Numerical Integration Error in Sigma-Point
  Filters
Improved Calibration of Numerical Integration Error in Sigma-Point Filters
Jakub Prüher
Toni Karvonen
Chris J. Oates
O. Straka
Simo Särkkä
57
9
0
28 Nov 2018
Symmetry Exploits for Bayesian Cubature Methods
Symmetry Exploits for Bayesian Cubature Methods
Toni Karvonen
Simo Särkkä
Chris J. Oates
70
15
0
26 Sep 2018
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
69
17
0
31 Aug 2018
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GPBDL
151
344
0
06 Jul 2018
Improving Quadrature for Constrained Integrands
Improving Quadrature for Constrained Integrands
Henry Chai
Roman Garnett
TPM
79
27
0
13 Feb 2018
Bayesian Quadrature for Multiple Related Integrals
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi
François‐Xavier Briol
Mark Girolami
108
39
0
12 Jan 2018
Fully symmetric kernel quadrature
Fully symmetric kernel quadrature
Toni Karvonen
Simo Särkkä
71
28
0
18 Mar 2017
Probabilistic Integration: A Role in Statistical Computation?
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
115
53
0
03 Dec 2015
Model-based Kernel Sum Rule: Kernel Bayesian Inference with
  Probabilistic Models
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Yu Nishiyama
Motonobu Kanagawa
Arthur Gretton
Kenji Fukumizu
105
3
0
18 Sep 2014
1