ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01180
  4. Cited By
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC

A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC

4 September 2017
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
ArXiv (abs)PDFHTML

Papers citing "A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC"

10 / 10 papers shown
Title
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
  Correction
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
117
6
0
09 Jan 2023
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
50
0
0
28 Oct 2022
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
108
36
0
19 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
79
73
0
07 Oct 2020
Stochastic Normalized Gradient Descent with Momentum for Large-Batch
  Training
Stochastic Normalized Gradient Descent with Momentum for Large-Batch Training
Shen-Yi Zhao
Chang-Wei Shi
Yin-Peng Xie
Wu-Jun Li
ODL
87
10
0
28 Jul 2020
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
Y. Lee
Zhao Song
Santosh Vempala
93
37
0
15 Dec 2018
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
82
78
0
25 Nov 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
86
87
0
15 Feb 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
76
38
0
25 Dec 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
91
101
0
16 Jun 2017
1