Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.05454
Cited By
Statistical inference on random dot product graphs: a survey
16 September 2017
A. Athreya
D. E. Fishkind
Keith D. Levin
V. Lyzinski
Youngser Park
Yichen Qin
D. Sussman
M. Tang
Joshua T. Vogelstein
Carey E. Priebe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Statistical inference on random dot product graphs: a survey"
34 / 34 papers shown
Title
Weighted Random Dot Product Graphs
Bernardo Marenco
P. Bermolen
Marcelo Fiori
Federico Larroca
Gonzalo Mateos
40
1
0
06 May 2025
Principal Graph Encoder Embedding and Principal Community Detection
Cencheng Shen
Yuexiao Dong
Carey E. Priebe
Jonathan Larson
Ha Trinh
Youngser Park
68
1
0
28 Jan 2025
Exploiting Observation Bias to Improve Matrix Completion
Yassir Jedra
Sean Mann
Charlotte Park
Devavrat Shah
33
1
0
03 Jan 2025
Network two-sample test for block models
Chung Kyong Nguen
Oscar Hernan Madrid Padilla
Arash A. Amini
30
0
0
10 Jun 2024
Refined Graph Encoder Embedding via Self-Training and Latent Community Recovery
Cencheng Shen
Jonathan Larson
Ha Trinh
Carey E. Priebe
43
2
0
21 May 2024
Detection of Model-based Planted Pseudo-cliques in Random Dot Product Graphs by the Adjacency Spectral Embedding and the Graph Encoder Embedding
Tong Qi
V. Lyzinski
13
0
0
18 Dec 2023
Semiparametric Modeling and Analysis for Longitudinal Network Data
Yinqiu He
Jiajin Sun
Yuang Tian
Z. Ying
Yang Feng
35
1
0
23 Aug 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
27
3
0
25 Jul 2023
Comparing Foundation Models using Data Kernels
Brandon Duderstadt
Hayden S. Helm
Carey E. Priebe
21
5
0
09 May 2023
Fitting Low-rank Models on Egocentrically Sampled Partial Networks
G. Chan
Tianxi Li
EgoV
16
1
0
09 Mar 2023
Implications of sparsity and high triangle density for graph representation learning
Hannah Sansford
Alexander Modell
N. Whiteley
Patrick Rubin-Delanchy
25
1
0
27 Oct 2022
From Local to Global: Spectral-Inspired Graph Neural Networks
Ningyuan Huang
Soledad Villar
Carey E. Priebe
Da Zheng
Cheng-Fu Huang
Lin F. Yang
Vladimir Braverman
23
14
0
24 Sep 2022
Adversarial contamination of networks in the setting of vertex nomination: a new trimming method
Sheyda Peyman
M. Tang
V. Lyzinski
AAML
28
0
0
20 Aug 2022
Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
Zhongyuan Lyu
Dong Xia
29
3
0
11 Jul 2022
Network change point localisation under local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
27
7
0
14 May 2022
Clustered Graph Matching for Label Recovery and Graph Classification
Zhirui Li
Jesús Arroyo
Konstantinos Pantazis
V. Lyzinski
FedML
16
1
0
06 May 2022
Mental State Classification Using Multi-graph Features
Guodong Chen
Hayden S. Helm
Kate Lytvynets
Weiwei Yang
Carey E. Priebe
21
8
0
25 Feb 2022
Online Change Point Detection for Weighted and Directed Random Dot Product Graphs
Bernardo Marenco
P. Bermolen
Marcelo Fiori
Federico Larroca
Gonzalo Mateos
23
10
0
26 Jan 2022
Asymptotics of
ℓ
2
\ell_2
ℓ
2
Regularized Network Embeddings
A. Davison
23
0
0
05 Jan 2022
Modularity maximisation for graphons
F. Klimm
N. Jones
Michael T. Schaub
16
1
0
02 Jan 2021
Extended Stochastic Block Models with Application to Criminal Networks
Sirio Legramanti
T. Rigon
Daniele Durante
David B. Dunson
30
21
0
16 Jul 2020
On Two Distinct Sources of Nonidentifiability in Latent Position Random Graph Models
Joshua Agterberg
M. Tang
Carey E. Priebe
CML
25
9
0
31 Mar 2020
The impossibility of low rank representations for triangle-rich complex networks
C. Seshadhri
Aneesh Sharma
Andrew Stolman
Ashish Goel
GNN
11
67
0
27 Mar 2020
Efficient Estimation for Random Dot Product Graphs via a One-step Procedure
Fangzheng Xie
Yanxun Xu
27
21
0
10 Oct 2019
Hyperlink Regression via Bregman Divergence
Akifumi Okuno
Hidetoshi Shimodaira
19
6
0
22 Jul 2019
A Multivariate Extreme Value Theory Approach to Anomaly Clustering and Visualization
Maël Chiapino
Stéphan Clémençon
Vincent Feuillard
Anne Sabourin
14
11
0
17 Jul 2019
Blind identification of stochastic block models from dynamical observations
Michael T. Schaub
Santiago Segarra
J. Tsitsiklis
14
33
0
22 May 2019
Learning by Unsupervised Nonlinear Diffusion
Mauro Maggioni
James M. Murphy
DiffM
22
40
0
15 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
16
57
0
11 Oct 2018
Unseeded low-rank graph matching by transform-based unsupervised point registration
Yuan Zhang
16
6
0
12 Jul 2018
Matched Filters for Noisy Induced Subgraph Detection
D. Sussman
Youngser Park
Carey E. Priebe
V. Lyzinski
16
31
0
06 Mar 2018
Network Representation Using Graph Root Distributions
Jing Lei
43
31
0
27 Feb 2018
Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels
Peter J. Bickel
David S. Choi
Xiangyu Chang
Hai Zhang
60
220
0
04 Jul 2012
A survey of statistical network models
Anna Goldenberg
A. Zheng
S. Fienberg
E. Airoldi
122
976
0
29 Dec 2009
1