Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.10432
Cited By
Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling
29 September 2017
Qi Meng
Wei-neng Chen
Yue Wang
Zhi-Ming Ma
Tie-Yan Liu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling"
32 / 32 papers shown
Title
Graph Learning at Scale: Characterizing and Optimizing Pre-Propagation GNNs
Zichao Yue
Chenhui Deng
Zhiru Zhang
AI4CE
39
0
0
17 Apr 2025
Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization
Quoc Tran-Dinh
Trang H. Tran
Lam M. Nguyen
42
0
0
29 Oct 2024
Expansive Supervision for Neural Radiance Field
Weixiang Zhang
Shuzhao Xie
Shijia Ge
Wei Yao
Chen Tang
Zhi Wang
43
1
0
12 Sep 2024
I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Noah Lewis
J. L. Bez
Suren Byna
62
0
0
16 Apr 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
42
1
0
25 Mar 2024
On the Last-Iterate Convergence of Shuffling Gradient Methods
Zijian Liu
Zhengyuan Zhou
42
2
0
12 Mar 2024
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
31
1
0
24 Oct 2023
KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training
Truong Thao Nguyen
Balazs Gerofi
Edgar Josafat Martinez-Noriega
Franccois Trahay
Mohamed Wahib
32
1
0
16 Oct 2023
On Batching Variable Size Inputs for Training End-to-End Speech Enhancement Systems
Philippe Gonzalez
T. S. Alstrøm
Tobias May
24
9
0
25 Jan 2023
Data-driven and machine-learning based prediction of wave propagation behavior in dam-break flood
Changli Li
Zheng Han
Yan-ge Li
Ming Li
Wei-dong Wang
16
2
0
19 Sep 2022
Exoshuffle: An Extensible Shuffle Architecture
Frank Sifei Luan
Stephanie Wang
Samyukta Yagati
Sean Kim
Kenneth Lien
Isaac Ong
Tony Hong
S. Cho
Eric Liang
Ion Stoica
17
6
0
09 Mar 2022
Distributed Random Reshuffling over Networks
Kun-Yen Huang
Xiao Li
Andre Milzarek
Shi Pu
Junwen Qiu
41
11
0
31 Dec 2021
BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing
Tianfeng Liu
Yangrui Chen
Dan Li
Chuan Wu
Yibo Zhu
Jun He
Size Zheng
Hongzheng Chen
Hongzhi Chen
Chuanxiong Guo
GNN
34
77
0
16 Dec 2021
Distributed stochastic proximal algorithm with random reshuffling for non-smooth finite-sum optimization
Xia Jiang
Xianlin Zeng
Jian Sun
Jie Chen
Lihua Xie
20
6
0
06 Nov 2021
The challenge of reproducible ML: an empirical study on the impact of bugs
Emilio Rivera-Landos
Foutse Khomh
Amin Nikanjam
8
5
0
09 Sep 2021
Optimizing Deep Neural Networks through Neuroevolution with Stochastic Gradient Descent
Haichao Zhang
K. Hao
Lei Gao
Bing Wei
Xue-song Tang
21
12
0
21 Dec 2020
SMG: A Shuffling Gradient-Based Method with Momentum
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
25
21
0
24 Nov 2020
Evaluation of Federated Learning in Phishing Email Detection
Chandra Thapa
Jun Tang
A. Abuadbba
Yansong Gao
S. Çamtepe
Surya Nepal
Mahathir Almashor
Yifeng Zheng
FedML
25
16
0
27 Jul 2020
Distributed Reinforcement Learning of Targeted Grasping with Active Vision for Mobile Manipulators
Yasuhiro Fujita
Kota Uenishi
Avinash Ummadisingu
P. Nagarajan
Shimpei Masuda
M. Castro
32
18
0
16 Jul 2020
Analyzing and Mitigating Data Stalls in DNN Training
Jayashree Mohan
Amar Phanishayee
Ashish Raniwala
Vijay Chidambaram
36
105
0
14 Jul 2020
A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to Balance Communication Overhead, Computational Complexity, and Convergence Rate
Naeimeh Omidvar
M. Maddah-ali
Hamed Mahdavi
ODL
25
3
0
27 Mar 2020
Closing the convergence gap of SGD without replacement
Shashank Rajput
Anant Gupta
Dimitris Papailiopoulos
14
61
0
24 Feb 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
44
78
0
19 Feb 2020
Seizure Prediction Using Bidirectional LSTM
Hazrat Ali
Feroz Karim
Junaid Javed Qureshi
Adnan O. M. Abuassba
Mohammad Farhad Bulbul
OOD
16
8
0
13 Dec 2019
Progressive Compressed Records: Taking a Byte out of Deep Learning Data
Michael Kuchnik
George Amvrosiadis
Virginia Smith
22
9
0
01 Nov 2019
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM
Ashesh Chattopadhyay
Pedram Hassanzadeh
D. Subramanian
AI4CE
24
40
0
20 Jun 2019
Sequenced-Replacement Sampling for Deep Learning
C. Ho
Dae Hoon Park
Wei Yang
Yi Chang
24
0
0
19 Oct 2018
LIRS: Enabling efficient machine learning on NVM-based storage via a lightweight implementation of random shuffling
Zhi-Lin Ke
Hsiang-Yun Cheng
Chia-Lin Yang
27
9
0
10 Oct 2018
Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent
Richeng Jin
Xiaofan He
H. Dai
FedML
25
2
0
08 Sep 2018
On the Fundamental Limits of Coded Data Shuffling for Distributed Machine Learning
Adel M. Elmahdy
S. Mohajer
FedML
19
15
0
11 Jul 2018
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
78
2,530
0
02 Jun 2018
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
186
683
0
07 Dec 2010
1