Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.00211
Cited By
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
30 September 2017
E. Weinan
Ting Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems"
50 / 252 papers shown
Title
Neural Stochastic Screened Poisson Reconstruction
Silvia Sellán
Alec Jacobson
3DV
46
6
0
21 Sep 2023
Latent assimilation with implicit neural representations for unknown dynamics
Zhuoyuan Li
Bin Dong
Pingwen Zhang
AI4CE
35
3
0
18 Sep 2023
Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation
Yuesheng Xu
Taishan Zeng
AI4CE
37
4
0
14 Sep 2023
Solving multiscale elliptic problems by sparse radial basis function neural networks
Zhiwen Wang
Minxin Chen
Jingrun Chen
68
15
0
01 Sep 2023
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
43
7
0
31 Aug 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
26
12
0
08 Aug 2023
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
30
1
0
07 Aug 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
33
6
0
06 Jul 2023
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
30
2
0
01 Jul 2023
A Finite Expression Method for Solving High-Dimensional Committor Problems
Zezheng Song
M. Cameron
Haizhao Yang
23
6
0
21 Jun 2023
Deep Stochastic Mechanics
Elena Orlova
Aleksei Ustimenko
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
DiffM
58
0
0
31 May 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
48
4
0
21 May 2023
Score Operator Newton transport
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
OT
41
1
0
16 May 2023
Theoretical Analysis of Inductive Biases in Deep Convolutional Networks
Zihao Wang
Lei Wu
28
20
0
15 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
39
17
0
08 May 2023
A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks
Marc Finzi
Andres Potapczynski
M. Choptuik
A. Wilson
28
12
0
28 Apr 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
34
10
0
27 Apr 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
56
5
0
26 Apr 2023
In-Context Operator Learning with Data Prompts for Differential Equation Problems
Liu Yang
Siting Liu
Tingwei Meng
Stanley J. Osher
51
61
0
17 Apr 2023
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
27
5
0
14 Apr 2023
EPINN-NSE: Enhanced Physics-Informed Neural Networks for Solving Navier-Stokes Equations
Ayoub Farkane
Mounir Ghogho
M. Oudani
M. Boutayeb
PINN
39
5
0
07 Apr 2023
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
37
2
0
03 Apr 2023
Multilevel CNNs for Parametric PDEs
Cosmas Heiß
Ingo Gühring
Martin Eigel
AI4CE
37
8
0
01 Apr 2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
48
1
0
30 Mar 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
47
9
0
28 Mar 2023
GNN-based physics solver for time-independent PDEs
R. J. Gladstone
H. Rahmani
V. Suryakumar
Hadi Meidani
M. DÉlia
A. Zareei
AI4CE
30
15
0
28 Mar 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
42
24
0
27 Mar 2023
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
31
1
0
22 Mar 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
35
5
0
25 Feb 2023
Minimax Instrumental Variable Regression and
L
2
L_2
L
2
Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
43
14
0
10 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
56
18
0
03 Feb 2023
Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at Irregularly Spaced Data
Jonathan W. Siegel
21
2
0
02 Feb 2023
Experimental observation on a low-rank tensor model for eigenvalue problems
Jun Hu
Pengzhan Jin
27
2
0
01 Feb 2023
Koopman neural operator as a mesh-free solver of non-linear partial differential equations
Wei Xiong
Xiaomeng Huang
Ziyang Zhang
Ruixuan Deng
Pei Sun
Yang Tian
AI4CE
29
32
0
24 Jan 2023
KoopmanLab: machine learning for solving complex physics equations
Wei Xiong
Muyuan Ma
Xiaomeng Huang
Ziyang Zhang
Pei Sun
Yang Tian
AI4CE
39
14
0
03 Jan 2023
MC-Nonlocal-PINNs: handling nonlocal operators in PINNs via Monte Carlo sampling
Xiaodong Feng
Yue Qian
W. Shen
30
3
0
26 Dec 2022
Guiding continuous operator learning through Physics-based boundary constraints
Nadim Saad
Gaurav Gupta
S. Alizadeh
Danielle C. Maddix
AI4CE
48
20
0
14 Dec 2022
Non-equispaced Fourier Neural Solvers for PDEs
Haitao Lin
Lirong Wu
Yongjie Xu
Yufei Huang
Siyuan Li
Guojiang Zhao
Z. Stan
27
7
0
09 Dec 2022
Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations
Wuzhe Xu
Yulong Lu
Li Wang
37
34
0
09 Dec 2022
Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations
Yemo Li
Yiwen Pang
Bin Shan
AI4CE
36
3
0
08 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
28
34
0
06 Dec 2022
Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators
Ha Maust
Zong-Yi Li
Yixuan Wang
Daniel Leibovici
O. Bruno
T. Hou
Anima Anandkumar
AI4CE
29
11
0
29 Nov 2022
Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems
Xiongbin Yan
Z. Xu
Zheng Ma
23
2
0
22 Nov 2022
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
40
0
0
21 Nov 2022
Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs
Seungchan Ko
S. Yun
Youngjoon Hong
40
5
0
16 Nov 2022
Gradient-enhanced deep neural network approximations
Xiaodong Feng
Li Zeng
UQCV
41
5
0
08 Nov 2022
A Deep Double Ritz Method (D
2
^2
2
RM) for solving Partial Differential Equations using Neural Networks
C. Uriarte
David Pardo
I. Muga
J. Muñoz‐Matute
54
18
0
07 Nov 2022
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
73
82
0
02 Nov 2022
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
29
2
0
28 Oct 2022
Neuro-symbolic partial differential equation solver
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
S. Choudhry
Frédéric Gibou
41
1
0
25 Oct 2022
Previous
1
2
3
4
5
6
Next