Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.00211
Cited By
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
30 September 2017
E. Weinan
Ting Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems"
50 / 252 papers shown
Title
JAX-DIPS: Neural bootstrapping of finite discretization methods and application to elliptic problems with discontinuities
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
Frédéric Gibou
26
8
0
25 Oct 2022
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
57
10
0
21 Oct 2022
r
−
r-
r
−
Adaptive Deep Learning Method for Solving Partial Differential Equations
Ángel J. Omella
David Pardo
AI4CE
36
4
0
19 Oct 2022
A cusp-capturing PINN for elliptic interface problems
Yu-Hau Tseng
Te-Sheng Lin
Wei-Fan Hu
M. Lai
21
33
0
16 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
42
17
0
06 Oct 2022
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
45
3
0
03 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
41
79
0
01 Oct 2022
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
34
0
0
29 Sep 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
38
12
0
28 Sep 2022
Deep learning for gradient flows using the Brezis-Ekeland principle
Laura Carini
Max Jensen
R. Nürnberg
28
0
0
28 Sep 2022
Neural Networks Based on Power Method and Inverse Power Method for Solving Linear Eigenvalue Problems
Qihong Yang
Yangtao Deng
Yu Yang
Qiaolin He
Shiquan Zhang
24
13
0
22 Sep 2022
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
38
21
0
20 Sep 2022
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
70
7
0
09 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
57
6
0
07 Sep 2022
Semi-analytic PINN methods for singularly perturbed boundary value problems
G. Gie
Youngjoon Hong
Chang-Yeol Jung
PINN
20
5
0
19 Aug 2022
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
29
51
0
26 Jul 2022
Learning Relaxation for Multigrid
Dmitry Kuznichov
AI4CE
24
1
0
25 Jul 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
48
0
0
21 Jul 2022
The Deep Ritz Method for Parametric
p
p
p
-Dirichlet Problems
A. Kaltenbach
Marius Zeinhofer
27
3
0
05 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
29
5
0
03 Jul 2022
Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
AI4CE
24
0
0
01 Jul 2022
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
Senwei Liang
Haizhao Yang
40
18
0
21 Jun 2022
Critical Investigation of Failure Modes in Physics-informed Neural Networks
S. Basir
Inanc Senocak
PINN
AI4CE
12
18
0
20 Jun 2022
Unsupervised Learning of the Total Variation Flow
T. G. Grossmann
Sören Dittmer
Yury Korolev
Carola-Bibiane Schönlieb
41
3
0
09 Jun 2022
A Neural Network Approach for Homogenization of Multiscale Problems
Jihun Han
Yoonsang Lee
35
13
0
04 Jun 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
47
6
0
28 May 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
59
145
0
26 May 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
77
59
0
23 May 2022
Towards Size-Independent Generalization Bounds for Deep Operator Nets
Pulkit Gopalani
Sayar Karmakar
Dibyakanti Kumar
Anirbit Mukherjee
AI4CE
37
5
0
23 May 2022
Revisiting PINNs: Generative Adversarial Physics-informed Neural Networks and Point-weighting Method
Wensheng Li
Chao Zhang
Chuncheng Wang
Hanting Guan
Dacheng Tao
DiffM
PINN
24
12
0
18 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
55
7
0
15 May 2022
BI-GreenNet: Learning Green's functions by boundary integral network
Guochang Lin
Fu-jun Chen
Pipi Hu
Xiang Chen
Junqing Chen
Jun Wang
Zuoqiang Shi
41
20
0
28 Apr 2022
Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
Naxian Ni
S. Dong
34
20
0
24 Apr 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
28
1
0
18 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
34
7
0
15 Apr 2022
The Mathematics of Artificial Intelligence
Gitta Kutyniok
31
0
0
16 Mar 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
37
58
0
16 Mar 2022
Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
39
23
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
41
15
0
28 Feb 2022
Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations
Benwei Wu
O. Hennigh
Jan Kautz
S. Choudhry
Wonmin Byeon
MLAU
AI4CE
14
11
0
24 Feb 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
33
161
0
12 Feb 2022
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning
Chengping Rao
Pu Ren
Yang Liu
Hao Sun
AI4CE
56
28
0
28 Jan 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization
G. Luca
E. Silverstein
48
10
0
26 Jan 2022
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
50
17
0
24 Jan 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Yaoyu Zhang
FaML
46
66
0
19 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
36
1,200
0
14 Jan 2022
De Rham compatible Deep Neural Network FEM
M. Longo
J. Opschoor
Nico Disch
Christoph Schwab
Jakob Zech
38
8
0
14 Jan 2022
Nonlocal Kernel Network (NKN): a Stable and Resolution-Independent Deep Neural Network
Huaiqian You
Yue Yu
M. DÉlia
T. Gao
Stewart Silling
34
70
0
06 Jan 2022
DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations
Keju Tang
Xiaoliang Wan
Chao Yang
32
109
0
28 Dec 2021
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
41
25
0
28 Dec 2021
Previous
1
2
3
4
5
6
Next