Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.04394
Cited By
Provably Fair Representations
12 October 2017
D. McNamara
Cheng Soon Ong
Robert C. Williamson
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Provably Fair Representations"
20 / 20 papers shown
Title
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
109
177
0
14 Jul 2022
Individual Fairness Guarantees for Neural Networks
Elias Benussi
A. Patané
Matthew Wicker
Luca Laurenti
Marta Kwiatkowska University of Oxford
68
22
0
11 May 2022
Fair Interpretable Learning via Correction Vectors
Mattia Cerrato
Marius Köppel
A. Segner
Stefan Kramer
FaML
CML
48
2
0
17 Jan 2022
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
95
20
0
01 Sep 2021
A Clarification of the Nuances in the Fairness Metrics Landscape
Alessandro Castelnovo
Riccardo Crupi
Greta Greco
D. Regoli
Ilaria Giuseppina Penco
A. Cosentini
FaML
59
192
0
01 Jun 2021
Fair Representations by Compression
Xavier Gitiaux
Huzefa Rangwala
FaML
114
14
0
28 May 2021
Removing biased data to improve fairness and accuracy
Sahil Verma
Michael Ernst
René Just
FaML
123
25
0
05 Feb 2021
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
Umang Gupta
Aaron Ferber
B. Dilkina
Greg Ver Steeg
113
58
0
11 Jan 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
324
500
0
31 Dec 2020
Removing Spurious Features can Hurt Accuracy and Affect Groups Disproportionately
Fereshte Khani
Percy Liang
FaML
61
66
0
07 Dec 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
67
96
0
24 Feb 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
122
569
0
06 Jan 2020
A Distributed Fair Machine Learning Framework with Private Demographic Data Protection
Hui Hu
Yijun Liu
Zhen Wang
Chao Lan
FaML
FedML
86
26
0
17 Sep 2019
Fair Kernel Regression via Fair Feature Embedding in Kernel Space
Austin Okray
Hui Hu
Chao Lan
FaML
80
4
0
04 Jul 2019
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
88
19
0
25 Jun 2019
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaML
DRL
81
227
0
31 May 2019
The Frontiers of Fairness in Machine Learning
Alexandra Chouldechova
Aaron Roth
FaML
205
416
0
20 Oct 2018
Hierarchical VampPrior Variational Fair Auto-Encoder
P. Botros
Jakub M. Tomczak
DRL
69
7
0
26 Jun 2018
POTs: Protective Optimization Technologies
B. Kulynych
R. Overdorf
Carmela Troncoso
Seda F. Gürses
115
97
0
07 Jun 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
388
685
0
17 Feb 2018
1