Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.07283
Cited By
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning
19 October 2017
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
UQCV
PER
BDL
UD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning"
9 / 9 papers shown
Title
Token-Level Uncertainty Estimation for Large Language Model Reasoning
Tunyu Zhang
Haizhou Shi
Yibin Wang
Hengyi Wang
Xiaoxiao He
...
Ligong Han
Kai Xu
Huatian Zhang
Dimitris N. Metaxas
Hao Wang
LRM
19
0
0
16 May 2025
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
42
65
0
07 Sep 2022
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
28
94
0
18 Jun 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
17
20
0
16 May 2020
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
27
231
0
30 Apr 2019
Trust Region Value Optimization using Kalman Filtering
Shirli Di-Castro Shashua
Shie Mannor
19
7
0
23 Jan 2019
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
32
898
0
28 Feb 2018
1