Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10547
Cited By
Interpretation of Neural Networks is Fragile
29 October 2017
Amirata Ghorbani
Abubakar Abid
James Y. Zou
FAtt
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretation of Neural Networks is Fragile"
50 / 467 papers shown
Title
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Evaluating Attribution Methods using White-Box LSTMs
Sophie Hao
FAtt
XAI
8
8
0
16 Oct 2020
FAR: A General Framework for Attributional Robustness
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
OOD
31
22
0
14 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
FAtt
30
17
0
14 Oct 2020
Neural Gaussian Mirror for Controlled Feature Selection in Neural Networks
Xin Xing
Yu Gui
Chenguang Dai
Jun S. Liu
AAML
13
4
0
13 Oct 2020
Gradient-based Analysis of NLP Models is Manipulable
Junlin Wang
Jens Tuyls
Eric Wallace
Sameer Singh
AAML
FAtt
21
58
0
12 Oct 2020
Explaining Clinical Decision Support Systems in Medical Imaging using Cycle-Consistent Activation Maximization
Alexander Katzmann
O. Taubmann
Stephen Ahmad
Alexander Muhlberg
M. Sühling
H. Groß
MedIm
11
19
0
09 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
14
172
0
08 Oct 2020
Information-Theoretic Visual Explanation for Black-Box Classifiers
Jihun Yi
Eunji Kim
Siwon Kim
Sungroh Yoon
FAtt
20
6
0
23 Sep 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
26
93
0
22 Sep 2020
Reconstructing Actions To Explain Deep Reinforcement Learning
Xuan Chen
Zifan Wang
Yucai Fan
Bonan Jin
Piotr (Peter) Mardziel
Carlee Joe-Wong
Anupam Datta
FAtt
8
2
0
17 Sep 2020
Evolutionary Selective Imitation: Interpretable Agents by Imitation Learning Without a Demonstrator
Roy Eliya
J. Herrmann
9
2
0
17 Sep 2020
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability
Ninghao Liu
Yunsong Meng
Xia Hu
Tie Wang
Bo Long
XAI
FAtt
23
7
0
16 Sep 2020
How Good is your Explanation? Algorithmic Stability Measures to Assess the Quality of Explanations for Deep Neural Networks
Thomas Fel
David Vigouroux
Rémi Cadène
Thomas Serre
XAI
FAtt
26
31
0
07 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aivodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
27
51
0
03 Sep 2020
Relevance Attack on Detectors
Sizhe Chen
Fan He
Xiaolin Huang
Kun Zhang
AAML
24
16
0
16 Aug 2020
Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis
Ming Fan
Wenying Wei
Xiaofei Xie
Yang Liu
X. Guan
Ting Liu
FAtt
AAML
14
36
0
13 Aug 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
8
161
0
11 Aug 2020
Fairwashing Explanations with Off-Manifold Detergent
Christopher J. Anders
Plamen Pasliev
Ann-Kathrin Dombrowski
K. Müller
Pan Kessel
FAtt
FaML
8
94
0
20 Jul 2020
A simple defense against adversarial attacks on heatmap explanations
Laura Rieger
Lars Kai Hansen
FAtt
AAML
25
37
0
13 Jul 2020
Regional Image Perturbation Reduces
L
p
L_p
L
p
Norms of Adversarial Examples While Maintaining Model-to-model Transferability
Utku Ozbulak
Jonathan Peck
W. D. Neve
Bart Goossens
Yvan Saeys
Arnout Van Messem
AAML
10
2
0
07 Jul 2020
Unifying Model Explainability and Robustness via Machine-Checkable Concepts
Vedant Nanda
Till Speicher
John P. Dickerson
Krishna P. Gummadi
Muhammad Bilal Zafar
AAML
4
4
0
01 Jul 2020
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
19
66
0
26 Jun 2020
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
S. Feizi
TDI
28
219
0
25 Jun 2020
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
16
593
0
16 Jun 2020
On Saliency Maps and Adversarial Robustness
Puneet Mangla
Vedant Singh
V. Balasubramanian
AAML
10
16
0
14 Jun 2020
Explainable Artificial Intelligence: a Systematic Review
Giulia Vilone
Luca Longo
XAI
20
266
0
29 May 2020
Explaining Neural Networks by Decoding Layer Activations
Johannes Schneider
Michalis Vlachos
AI4CE
14
15
0
27 May 2020
NILE : Natural Language Inference with Faithful Natural Language Explanations
Sawan Kumar
Partha P. Talukdar
XAI
LRM
6
159
0
25 May 2020
Multi-Task Learning in Histo-pathology for Widely Generalizable Model
Jevgenij Gamper
Navid Alemi Koohbanani
Nasir M. Rajpoot
14
7
0
09 May 2020
Towards Frequency-Based Explanation for Robust CNN
Zifan Wang
Yilin Yang
Ankit Shrivastava
Varun Rawal
Zihao Ding
AAML
FAtt
11
47
0
06 May 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
28
218
0
01 May 2020
Hide-and-Seek: A Template for Explainable AI
Thanos Tagaris
A. Stafylopatis
6
6
0
30 Apr 2020
Corpus-level and Concept-based Explanations for Interpretable Document Classification
Tian Shi
Xuchao Zhang
Ping Wang
Chandan K. Reddy
FAtt
18
8
0
24 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
Live Trojan Attacks on Deep Neural Networks
Robby Costales
Chengzhi Mao
R. Norwitz
Bryan Kim
Junfeng Yang
AAML
6
21
0
22 Apr 2020
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
Alon Jacovi
Yoav Goldberg
XAI
8
564
0
07 Apr 2020
PanNuke Dataset Extension, Insights and Baselines
Jevgenij Gamper
Navid Alemi Koohbanani
Ksenija Benes
S. Graham
Mostafa Jahanifar
S. Khurram
A. Azam
K. Hewitt
Nasir M. Rajpoot
110
174
0
24 Mar 2020
Robust Out-of-distribution Detection for Neural Networks
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
158
84
0
21 Mar 2020
Heat and Blur: An Effective and Fast Defense Against Adversarial Examples
Haya Brama
Tal Grinshpoun
AAML
8
6
0
17 Mar 2020
Model Agnostic Multilevel Explanations
K. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
13
42
0
12 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
212
0
09 Mar 2020
SAM: The Sensitivity of Attribution Methods to Hyperparameters
Naman Bansal
Chirag Agarwal
Anh Nguyen
FAtt
16
0
0
04 Mar 2020
A Distributional Framework for Data Valuation
Amirata Ghorbani
Michael P. Kim
James Y. Zou
TDI
12
125
0
27 Feb 2020
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Y. Zou
FAtt
TDI
25
108
0
23 Feb 2020
Bayes-TrEx: a Bayesian Sampling Approach to Model Transparency by Example
Serena Booth
Yilun Zhou
Ankit J. Shah
J. Shah
BDL
6
2
0
19 Feb 2020
Interpreting Interpretations: Organizing Attribution Methods by Criteria
Zifan Wang
Piotr (Peter) Mardziel
Anupam Datta
Matt Fredrikson
XAI
FAtt
6
17
0
19 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
27
143
0
10 Feb 2020
DANCE: Enhancing saliency maps using decoys
Y. Lu
Wenbo Guo
Xinyu Xing
William Stafford Noble
AAML
32
14
0
03 Feb 2020
Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution
Nikaash Puri
Sukriti Verma
Piyush B. Gupta
Dhruv Kayastha
Shripad Deshmukh
Balaji Krishnamurthy
Sameer Singh
FAtt
AAML
11
75
0
23 Dec 2019
Previous
1
2
3
...
10
7
8
9
Next