ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10742
  4. Cited By
Implicit Causal Models for Genome-wide Association Studies

Implicit Causal Models for Genome-wide Association Studies

30 October 2017
Dustin Tran
David M. Blei
    CML
ArXiv (abs)PDFHTML

Papers citing "Implicit Causal Models for Genome-wide Association Studies"

13 / 13 papers shown
Title
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG
  Learning
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning
Matthew Ashman
Chao Ma
Agrin Hilmkil
Joel Jennings
Cheng Zhang
CMLAI4CE
93
10
0
22 Mar 2023
Deep Multi-Modal Structural Equations For Causal Effect Estimation With
  Unstructured Proxies
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CMLSyDa
75
11
0
18 Mar 2022
Sequential Deconfounding for Causal Inference with Unobserved
  Confounders
Sequential Deconfounding for Causal Inference with Unobserved Confounders
Tobias Hatt
Stefan Feuerriegel
CML
93
29
0
16 Apr 2021
Causal Inference using Gaussian Processes with Structured Latent
  Confounders
Causal Inference using Gaussian Processes with Structured Latent Confounders
Sam Witty
Kenta Takatsu
David D. Jensen
Vikash K. Mansinghka
CML
140
19
0
14 Jul 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CMLMedIm
110
243
0
11 Jun 2020
Counterfactual Reasoning for Fair Clinical Risk Prediction
Counterfactual Reasoning for Fair Clinical Risk Prediction
Stephen Pfohl
Tony Duan
D. Ding
N. Shah
OODCML
71
58
0
14 Jul 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDLCML
136
1
0
03 Apr 2019
Time Series Deconfounder: Estimating Treatment Effects over Time in the
  Presence of Hidden Confounders
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
Ioana Bica
Ahmed Alaa
M. Schaar
BDLCMLAI4TS
72
114
0
01 Feb 2019
Simple, Distributed, and Accelerated Probabilistic Programming
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
85
56
0
05 Nov 2018
Multiple Causal Inference with Latent Confounding
Multiple Causal Inference with Latent Confounding
Rajesh Ranganath
A. Perotte
CML
61
50
0
21 May 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CECML
68
291
0
17 May 2018
Deep Learning for Genomics: A Concise Overview
Deep Learning for Genomics: A Concise Overview
Tianwei Yue
Yuanxin Wang
Longxiang Zhang
Chunming Gu
Haohan Wang
Wenping Wang
Qi Lyu
Yujie Dun
AILawVLMBDL
86
91
0
02 Feb 2018
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
117
352
0
28 Nov 2017
1