ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05597
  4. Cited By
Advances in Variational Inference

Advances in Variational Inference

15 November 2017
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
    BDL
ArXivPDFHTML

Papers citing "Advances in Variational Inference"

50 / 72 papers shown
Title
Generative Modeling of Class Probability for Multi-Modal Representation Learning
Generative Modeling of Class Probability for Multi-Modal Representation Learning
Jungkyoo Shin
Bumsoo Kim
Eunwoo Kim
50
1
0
21 Mar 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
70
0
0
25 Feb 2025
Functional Complexity-adaptive Temporal Tensor Decomposition
Functional Complexity-adaptive Temporal Tensor Decomposition
Panqi Chen
Lei Cheng
J. Li
Weichang Li
W. Liu
Jiang Bian
Shikai Fang
CML
72
0
0
10 Feb 2025
A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification
A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification
Chunheng Zhao
P. Pisu
G. Comert
N. Begashaw
Varghese Vaidyan
Nina Christine Hubig
AAML
24
0
0
31 Dec 2024
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
91
1
0
27 Nov 2024
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Massimo Bilancia
Samuele Magro
33
0
0
29 Oct 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
48
3
0
05 Jun 2024
Rényi Neural Processes
Rényi Neural Processes
Xuesong Wang
He Zhao
Edwin V. Bonilla
UQCV
BDL
32
0
0
25 May 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
19
0
0
16 Apr 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
24
1
0
26 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
25
1
0
19 Jan 2024
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
38
0
0
25 Oct 2023
Group Spike and Slab Variational Bayes
Group Spike and Slab Variational Bayes
M. Komodromos
Marina Evangelou
Sarah Filippi
Kolyan Ray
20
2
0
19 Sep 2023
Distributed Variational Inference for Online Supervised Learning
Distributed Variational Inference for Online Supervised Learning
P. Paritosh
Nikolay A. Atanasov
Sonia Martinez
24
1
0
05 Sep 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Is novelty predictable?
Is novelty predictable?
Clara Fannjiang
Jennifer Listgarten
AI4CE
10
14
0
01 Jun 2023
Learning Sparsity of Representations with Discrete Latent Variables
Learning Sparsity of Representations with Discrete Latent Variables
Zhao Xu
Daniel Oñoro-Rubio
G. Serra
Mathias Niepert
10
0
0
03 Apr 2023
VI-DGP: A variational inference method with deep generative prior for
  solving high-dimensional inverse problems
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
11
2
0
22 Feb 2023
Bayesian Federated Inference for estimating Statistical Models based on
  Non-shared Multicenter Data sets
Bayesian Federated Inference for estimating Statistical Models based on Non-shared Multicenter Data sets
Marianne A Jonker
H. Pazira
Anthony C. C. Coolen
FedML
10
5
0
15 Feb 2023
Prior Density Learning in Variational Bayesian Phylogenetic Parameters
  Inference
Prior Density Learning in Variational Bayesian Phylogenetic Parameters Inference
Amine M. Remita
Golrokh Vitae
Abdoulaye Baniré Diallo
BDL
13
0
0
06 Feb 2023
Machine Learning with High-Cardinality Categorical Features in Actuarial
  Applications
Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Benjamin Avanzi
G. Taylor
Melantha Wang
Bernard Wong
17
11
0
30 Jan 2023
Projective Integral Updates for High-Dimensional Variational Inference
Projective Integral Updates for High-Dimensional Variational Inference
J. Duersch
13
1
0
20 Jan 2023
Variational Inference for Semiparametric Bayesian Novelty Detection in
  Large Datasets
Variational Inference for Semiparametric Bayesian Novelty Detection in Large Datasets
L. Benedetti
Eric Boniardi
Leonardo Chiani
Jacopo Ghirri
Marta Mastropietro
A. Cappozzo
Francesco Denti
19
0
0
04 Dec 2022
Offline Reinforcement Learning with Adaptive Behavior Regularization
Offline Reinforcement Learning with Adaptive Behavior Regularization
Yunfan Zhou
Xijun Li
Qingyu Qu
OffRL
6
1
0
15 Nov 2022
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain
  MRI with Structured Variational Priors
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
J. Falet
Brennan Nichyporuk
Changjian Shui
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
6
2
0
15 Nov 2022
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
19
3
0
09 Nov 2022
Interactive inference: a multi-agent model of cooperative joint actions
Interactive inference: a multi-agent model of cooperative joint actions
D. Maisto
Francesco Donnarumma
G. Pezzulo
14
15
0
24 Oct 2022
Posterior Regularized Bayesian Neural Network Incorporating Soft and
  Hard Knowledge Constraints
Posterior Regularized Bayesian Neural Network Incorporating Soft and Hard Knowledge Constraints
Jiayu Huang
Yutian Pang
Yongming Liu
Hao Yan
BDL
UQCV
9
15
0
16 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
132
77
0
02 Oct 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
24
20
0
15 Sep 2022
MPPI-IPDDP: Hybrid Method of Collision-Free Smooth Trajectory Generation
  for Autonomous Robots
MPPI-IPDDP: Hybrid Method of Collision-Free Smooth Trajectory Generation for Autonomous Robots
Mingeuk Kim
Kwang-Ki K. Kim
24
3
0
04 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Variational Deep Image Restoration
Variational Deep Image Restoration
Jae Woong Soh
N. Cho
SupR
38
39
0
03 Jul 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
  Inference in Sparsity-Aware Modeling
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
60
73
0
28 May 2022
Variational Kalman Filtering with Hinf-Based Correction for Robust
  Bayesian Learning in High Dimensions
Variational Kalman Filtering with Hinf-Based Correction for Robust Bayesian Learning in High Dimensions
Niladri Das
J. Duersch
Thomas A. Catanach
10
0
0
27 Apr 2022
Guaranteed Bounds for Posterior Inference in Universal Probabilistic
  Programming
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
Raven Beutner
Luke Ong
Fabian Zaiser
14
11
0
06 Apr 2022
Hybrid Predictive Coding: Inferring, Fast and Slow
Hybrid Predictive Coding: Inferring, Fast and Slow
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
16
36
0
05 Apr 2022
Theoretical Connection between Locally Linear Embedding, Factor
  Analysis, and Probabilistic PCA
Theoretical Connection between Locally Linear Embedding, Factor Analysis, and Probabilistic PCA
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
8
3
0
25 Mar 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
10
25
0
20 Mar 2022
Diffusion Probabilistic Modeling for Video Generation
Diffusion Probabilistic Modeling for Video Generation
Ruihan Yang
Prakhar Srivastava
Stephan Mandt
DiffM
VGen
27
255
0
16 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
15
12
0
24 Feb 2022
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill
  Acquisition
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition
Dylan Slack
Yinlam Chow
Bo Dai
Nevan Wichers
OffRL
13
7
0
10 Feb 2022
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview,
  Implementation, and Applications
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
8
17
0
28 Jan 2022
Reactive Message Passing for Scalable Bayesian Inference
Reactive Message Passing for Scalable Bayesian Inference
Dmitry V. Bagaev
Bert De Vries
17
18
0
25 Dec 2021
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
25
0
20 Dec 2021
OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
Qiang Liu
Nakjung Choi
Tao Han
OffRL
8
29
0
02 Nov 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
28
33
0
27 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
11
22
0
22 Oct 2021
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts
  for Inventory Management
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts for Inventory Management
Daniele Gammelli
Yihua Wang
Dennis Prak
Filipe Rodrigues
Stefan Minner
Francisco Câmara Pereira
AI4TS
6
36
0
28 Jul 2021
12
Next