Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.05597
Cited By
Advances in Variational Inference
15 November 2017
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Advances in Variational Inference"
50 / 72 papers shown
Title
Generative Modeling of Class Probability for Multi-Modal Representation Learning
Jungkyoo Shin
Bumsoo Kim
Eunwoo Kim
50
1
0
21 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
70
0
0
25 Feb 2025
Functional Complexity-adaptive Temporal Tensor Decomposition
Panqi Chen
Lei Cheng
J. Li
Weichang Li
W. Liu
Jiang Bian
Shikai Fang
CML
72
0
0
10 Feb 2025
A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification
Chunheng Zhao
P. Pisu
G. Comert
N. Begashaw
Varghese Vaidyan
Nina Christine Hubig
AAML
24
0
0
31 Dec 2024
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
91
1
0
27 Nov 2024
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Massimo Bilancia
Samuele Magro
33
0
0
29 Oct 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
48
3
0
05 Jun 2024
Rényi Neural Processes
Xuesong Wang
He Zhao
Edwin V. Bonilla
UQCV
BDL
32
0
0
25 May 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
19
0
0
16 Apr 2024
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
24
1
0
26 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
25
1
0
19 Jan 2024
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
38
0
0
25 Oct 2023
Group Spike and Slab Variational Bayes
M. Komodromos
Marina Evangelou
Sarah Filippi
Kolyan Ray
20
2
0
19 Sep 2023
Distributed Variational Inference for Online Supervised Learning
P. Paritosh
Nikolay A. Atanasov
Sonia Martinez
24
1
0
05 Sep 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Is novelty predictable?
Clara Fannjiang
Jennifer Listgarten
AI4CE
10
14
0
01 Jun 2023
Learning Sparsity of Representations with Discrete Latent Variables
Zhao Xu
Daniel Oñoro-Rubio
G. Serra
Mathias Niepert
10
0
0
03 Apr 2023
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
11
2
0
22 Feb 2023
Bayesian Federated Inference for estimating Statistical Models based on Non-shared Multicenter Data sets
Marianne A Jonker
H. Pazira
Anthony C. C. Coolen
FedML
10
5
0
15 Feb 2023
Prior Density Learning in Variational Bayesian Phylogenetic Parameters Inference
Amine M. Remita
Golrokh Vitae
Abdoulaye Baniré Diallo
BDL
13
0
0
06 Feb 2023
Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Benjamin Avanzi
G. Taylor
Melantha Wang
Bernard Wong
17
11
0
30 Jan 2023
Projective Integral Updates for High-Dimensional Variational Inference
J. Duersch
13
1
0
20 Jan 2023
Variational Inference for Semiparametric Bayesian Novelty Detection in Large Datasets
L. Benedetti
Eric Boniardi
Leonardo Chiani
Jacopo Ghirri
Marta Mastropietro
A. Cappozzo
Francesco Denti
19
0
0
04 Dec 2022
Offline Reinforcement Learning with Adaptive Behavior Regularization
Yunfan Zhou
Xijun Li
Qingyu Qu
OffRL
6
1
0
15 Nov 2022
Clinically Plausible Pathology-Anatomy Disentanglement in Patient Brain MRI with Structured Variational Priors
Anjun Hu
J. Falet
Brennan Nichyporuk
Changjian Shui
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
6
2
0
15 Nov 2022
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
19
3
0
09 Nov 2022
Interactive inference: a multi-agent model of cooperative joint actions
D. Maisto
Francesco Donnarumma
G. Pezzulo
14
15
0
24 Oct 2022
Posterior Regularized Bayesian Neural Network Incorporating Soft and Hard Knowledge Constraints
Jiayu Huang
Yutian Pang
Yongming Liu
Hao Yan
BDL
UQCV
9
15
0
16 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
132
77
0
02 Oct 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
24
20
0
15 Sep 2022
MPPI-IPDDP: Hybrid Method of Collision-Free Smooth Trajectory Generation for Autonomous Robots
Mingeuk Kim
Kwang-Ki K. Kim
24
3
0
04 Aug 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Variational Deep Image Restoration
Jae Woong Soh
N. Cho
SupR
38
39
0
03 Jul 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
60
73
0
28 May 2022
Variational Kalman Filtering with Hinf-Based Correction for Robust Bayesian Learning in High Dimensions
Niladri Das
J. Duersch
Thomas A. Catanach
10
0
0
27 Apr 2022
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
Raven Beutner
Luke Ong
Fabian Zaiser
14
11
0
06 Apr 2022
Hybrid Predictive Coding: Inferring, Fast and Slow
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
16
36
0
05 Apr 2022
Theoretical Connection between Locally Linear Embedding, Factor Analysis, and Probabilistic PCA
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
8
3
0
25 Mar 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
10
25
0
20 Mar 2022
Diffusion Probabilistic Modeling for Video Generation
Ruihan Yang
Prakhar Srivastava
Stephan Mandt
DiffM
VGen
27
255
0
16 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
15
12
0
24 Feb 2022
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition
Dylan Slack
Yinlam Chow
Bo Dai
Nevan Wichers
OffRL
13
7
0
10 Feb 2022
Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Se Yoon Lee
8
17
0
28 Jan 2022
Reactive Message Passing for Scalable Bayesian Inference
Dmitry V. Bagaev
Bert De Vries
17
18
0
25 Dec 2021
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
25
0
20 Dec 2021
OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
Qiang Liu
Nakjung Choi
Tao Han
OffRL
8
29
0
02 Nov 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
28
33
0
27 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
11
22
0
22 Oct 2021
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts for Inventory Management
Daniele Gammelli
Yihua Wang
Dennis Prak
Filipe Rodrigues
Stefan Minner
Francisco Câmara Pereira
AI4TS
6
36
0
28 Jul 2021
1
2
Next