ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05597
  4. Cited By
Advances in Variational Inference

Advances in Variational Inference

15 November 2017
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
    BDL
ArXivPDFHTML

Papers citing "Advances in Variational Inference"

26 / 76 papers shown
Title
OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
Qiang Liu
Nakjung Choi
Tao Han
OffRL
10
29
0
02 Nov 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
28
33
0
27 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
13
22
0
22 Oct 2021
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts
  for Inventory Management
Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts for Inventory Management
Daniele Gammelli
Yihua Wang
Dennis Prak
Filipe Rodrigues
Stefan Minner
Francisco Câmara Pereira
AI4TS
6
36
0
28 Jul 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
48
73
0
09 Jul 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
22
2
0
23 Jun 2021
Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
  in MOOC Forums
Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums
Jialin Yu
Laila Alrajhi
Anoushka Harit
Zhongtian Sun
Alexandra I. Cristea
Lei Shi
BDL
UQCV
8
8
0
26 Apr 2021
Energy Forecasting in Smart Grid Systems: A Review of the
  State-of-the-art Techniques
Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-art Techniques
D. Kaur
S. Islam
Md. Apel Mahmud
Md Enamul Haque
ZhaoYang Dong
AI4TS
6
31
0
25 Nov 2020
Flexible mean field variational inference using mixtures of
  non-overlapping exponential families
Flexible mean field variational inference using mixtures of non-overlapping exponential families
J. Spence
11
4
0
14 Oct 2020
Controlling the Interaction Between Generation and Inference in
  Semi-Supervised Variational Autoencoders Using Importance Weighting
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
16
1
0
13 Oct 2020
Dynamics of coordinate ascent variational inference: A case study in 2D
  Ising models
Dynamics of coordinate ascent variational inference: A case study in 2D Ising models
Sean Plummer
D. Pati
A. Bhattacharya
17
18
0
13 Jul 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
6
76
0
17 Jun 2020
The fff-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
15
1
0
26 Sep 2019
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy
Javier Cózar
Rafael Cabañas
Antonio Salmerón
A. Masegosa
BDL
8
3
0
29 Aug 2019
Making Sense of Vision and Touch: Learning Multimodal Representations
  for Contact-Rich Tasks
Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
Michelle A. Lee
Yuke Zhu
Peter Zachares
Matthew Tan
K. Srinivasan
Silvio Savarese
Fei-Fei Li
Animesh Garg
Jeannette Bohg
SSL
13
207
0
28 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
11
245
0
09 Jul 2019
Streaming Variational Monte Carlo
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
13
21
0
04 Jun 2019
Deep Generative Video Compression
Deep Generative Video Compression
Jun Han
Salvator Lombardo
Christopher Schroers
Stephan Mandt
VGen
16
58
0
05 Oct 2018
A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity
  Modeling
A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity Modeling
Judith Butepage
Hedvig Kjellström
Danica Kragic
44
8
0
24 Sep 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
17
243
0
07 Feb 2018
Dynamic Word Embeddings
Dynamic Word Embeddings
Robert Bamler
Stephan Mandt
BDL
153
230
0
27 Feb 2017
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
79
36
0
01 Nov 2016
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
160
1,122
0
25 Jul 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
Previous
12