Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.10127
Cited By
v1
v2 (latest)
Variational Inference for Gaussian Process Models with Linear Complexity
28 November 2017
Ching-An Cheng
Byron Boots
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference for Gaussian Process Models with Linear Complexity"
19 / 19 papers shown
Title
Variational Nearest Neighbor Gaussian Process
Luhuan Wu
Geoff Pleiss
John P. Cunningham
BDL
94
15
0
03 Feb 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
129
2
0
21 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Latent structure blockmodels for Bayesian spectral graph clustering
Francesco Sanna Passino
N. Heard
62
1
0
04 Jul 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDL
AI4TS
71
3
0
09 Jun 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
74
19
0
16 Feb 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
102
61
0
08 Nov 2020
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
89
29
0
26 Oct 2020
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
37
7
0
25 Sep 2020
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
62
19
0
25 Jun 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
81
165
0
21 Feb 2020
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
67
22
0
21 Feb 2020
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
52
3
0
14 Sep 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
56
3
0
31 May 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
95
10
0
18 Dec 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
62
97
0
14 Jun 2018
1