ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10127
  4. Cited By
Variational Inference for Gaussian Process Models with Linear Complexity
v1v2 (latest)

Variational Inference for Gaussian Process Models with Linear Complexity

28 November 2017
Ching-An Cheng
Byron Boots
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference for Gaussian Process Models with Linear Complexity"

19 / 19 papers shown
Title
Variational Nearest Neighbor Gaussian Process
Variational Nearest Neighbor Gaussian Process
Luhuan Wu
Geoff Pleiss
John P. Cunningham
BDL
94
15
0
03 Feb 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
129
2
0
21 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Latent structure blockmodels for Bayesian spectral graph clustering
Latent structure blockmodels for Bayesian spectral graph clustering
Francesco Sanna Passino
N. Heard
62
1
0
04 Jul 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDLAI4TS
71
3
0
09 Jun 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
74
19
0
16 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
102
61
0
08 Nov 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRLBDL
89
29
0
26 Oct 2020
Stein Variational Gaussian Processes
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
37
7
0
25 Sep 2020
Prediction with Approximated Gaussian Process Dynamical Models
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
65
19
0
25 Jun 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
81
165
0
21 Feb 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
67
22
0
21 Feb 2020
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
54
3
0
14 Sep 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCVBDL
56
3
0
31 May 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
95
10
0
18 Dec 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
136
697
0
03 Jul 2018
Inference in Deep Gaussian Processes using Stochastic Gradient
  Hamiltonian Monte Carlo
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
62
97
0
14 Jun 2018
1