Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.10456
Cited By
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
28 November 2017
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent"
32 / 32 papers shown
Title
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Xiao Wang
Tian Xie
52
0
0
26 Feb 2025
Grams: Gradient Descent with Adaptive Momentum Scaling
Yang Cao
Xiaoyu Li
Zhao-quan Song
ODL
83
2
0
22 Dec 2024
Cautious Optimizers: Improving Training with One Line of Code
Kaizhao Liang
Lizhang Chen
B. Liu
Qiang Liu
ODL
103
5
0
25 Nov 2024
Comparisons Are All You Need for Optimizing Smooth Functions
Chenyi Zhang
Tongyang Li
AAML
24
1
0
19 May 2024
Beyond first-order methods for non-convex non-concave min-max optimization
Abhijeet Vyas
Brian Bullins
23
1
0
17 Apr 2023
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
13
0
0
17 Nov 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
22
7
0
04 Oct 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
24
17
0
15 Jun 2022
An Adaptive Gradient Method with Energy and Momentum
Hailiang Liu
Xuping Tian
ODL
16
9
0
23 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
16
8
0
18 Feb 2022
Differentially Private Temporal Difference Learning with Stochastic Nonconvex-Strongly-Concave Optimization
Canzhe Zhao
Yanjie Ze
Jing Dong
Baoxiang Wang
Shuai Li
39
4
0
25 Jan 2022
Adaptive Gaussian Process based Stochastic Trajectory Optimization for Motion Planning
Yichang Feng
Haiyun Zhang
Jin Wang
Guodong Lu
33
30
0
30 Dec 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport
Minhui Huang
Shiqian Ma
Lifeng Lai
27
3
0
29 Sep 2021
Majorization Minimization Methods for Distributed Pose Graph Optimization
Taosha Fan
Todd D. Murphey
31
19
0
30 Jul 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
22
9
0
28 Jul 2021
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
25
11
0
10 Oct 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
11
178
0
01 Sep 2020
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
K. Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
14
186
0
19 Jun 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
17
33
0
01 May 2019
Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources
Haibin Lin
Hang Zhang
Yifei Ma
Tong He
Zhi-Li Zhang
Sheng Zha
Mu Li
17
23
0
26 Apr 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
18
3
0
21 Jan 2019
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
33
567
0
04 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
19
146
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
K. Ramchandran
Peter L. Bartlett
FedML
21
97
0
14 Jun 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurélien Lucchi
Thomas Hofmann
11
161
0
15 Mar 2018
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Srinadh Bhojanapalli
Nicolas Boumal
Prateek Jain
Praneeth Netrapalli
14
42
0
01 Mar 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
19
1,016
0
13 Feb 2018
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
24
200
0
20 Jul 2017
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
8
103
0
14 Sep 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
97
1,151
0
04 Mar 2015
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
175
1,185
0
30 Nov 2014
1