ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10604
  4. Cited By
TensorFlow Distributions

TensorFlow Distributions

28 November 2017
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
    GP
ArXivPDFHTML

Papers citing "TensorFlow Distributions"

50 / 60 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
30
2
0
16 May 2025
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
67
0
0
17 Feb 2025
Expert-elicitation method for non-parametric joint priors using normalizing flows
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
95
1
0
24 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
38
0
0
31 Oct 2024
Simulation-based inference with the Python Package sbijax
Simulation-based inference with the Python Package sbijax
Simon Dirmeier
S. Ulzega
Antonietta Mira
Carlo Albert
38
1
0
28 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
133
0
0
26 Aug 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference
  Algorithms
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Bürkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
A Direct Importance Sampling-based Framework for Rare Event Uncertainty
  Quantification in Non-Gaussian Spaces
A Direct Importance Sampling-based Framework for Rare Event Uncertainty Quantification in Non-Gaussian Spaces
Elsayed M. Eshra
Konstantinos G. Papakonstantinou
Hamed Nikbakht
23
0
0
23 May 2024
Uncertainty Quantification in Machine Learning for Joint Speaker
  Diarization and Identification
Uncertainty Quantification in Machine Learning for Joint Speaker Diarization and Identification
Simon W. McKnight
Aidan O. T. Hogg
Vincent W. Neo
Patrick A. Naylor
11
1
0
28 Dec 2023
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed
Md. Sakib Bin Alam
Maliha Kabir
Shaila Afrin
Sabiha Jannat Rafa
Aanushka Mehjabin
Amir H. Gandomi
AI4CE
42
2
0
06 Sep 2023
SynJax: Structured Probability Distributions for JAX
SynJax: Structured Probability Distributions for JAX
Miloš Stanojević
Laurent Sartran
SyDa
13
4
0
07 Aug 2023
Data-Driven Probabilistic Energy Consumption Estimation for Battery
  Electric Vehicles with Model Uncertainty
Data-Driven Probabilistic Energy Consumption Estimation for Battery Electric Vehicles with Model Uncertainty
Ayan Maity
Sudeshna Sarkar
20
8
0
02 Jul 2023
Overcoming the Limitations of Localization Uncertainty: Efficient &
  Exact Non-Linear Post-Processing and Calibration
Overcoming the Limitations of Localization Uncertainty: Efficient & Exact Non-Linear Post-Processing and Calibration
Moussa Kassem Sbeyti
Michelle Karg
Christian Wirth
Azarm Nowzad
S. Albayrak
22
3
0
15 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Testing for the Markov Property in Time Series via Deep Conditional
  Generative Learning
Testing for the Markov Property in Time Series via Deep Conditional Generative Learning
Yunzhe Zhou
C. Shi
Lexin Li
Q. Yao
AI4TS
35
8
0
30 May 2023
Interpretable (not just posthoc-explainable) heterogeneous survivor
  bias-corrected treatment effects for assignment of postdischarge
  interventions to prevent readmissions
Interpretable (not just posthoc-explainable) heterogeneous survivor bias-corrected treatment effects for assignment of postdischarge interventions to prevent readmissions
Hongjing Xia
Joshua C. Chang
S. Nowak
Sonya Mahajan
R. Mahajan
Ted L. Chang
Carson C. Chow
35
1
0
19 Apr 2023
Uncertainty-Aware Vehicle Energy Efficiency Prediction using an Ensemble
  of Neural Networks
Uncertainty-Aware Vehicle Energy Efficiency Prediction using an Ensemble of Neural Networks
Jihed Khiari
Cristina Olaverri-Monreal
19
1
0
14 Apr 2023
L-HYDRA: Multi-Head Physics-Informed Neural Networks
L-HYDRA: Multi-Head Physics-Informed Neural Networks
Zongren Zou
George Karniadakis
AI4CE
18
26
0
05 Jan 2023
Workload Forecasting of a Logistic Node Using Bayesian Neural Networks
Workload Forecasting of a Logistic Node Using Bayesian Neural Networks
Emin Cagatay Nakilcioglu
Anisa Rizvanolli
21
1
0
09 Nov 2022
Quantum-probabilistic Hamiltonian learning for generative modelling &
  anomaly detection
Quantum-probabilistic Hamiltonian learning for generative modelling & anomaly detection
Jack Y. Araz
M. Spannowsky
22
13
0
07 Nov 2022
MARS: Meta-Learning as Score Matching in the Function Space
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
30
4
0
24 Oct 2022
Learning Robust Dynamics through Variational Sparse Gating
Learning Robust Dynamics through Variational Sparse Gating
A. Jain
Shivakanth Sujit
S. Joshi
Vincent Michalski
Danijar Hafner
Samira Ebrahimi Kahou
27
8
0
21 Oct 2022
Quantifying Uncertainty with Probabilistic Machine Learning Modeling in
  Wireless Sensing
Quantifying Uncertainty with Probabilistic Machine Learning Modeling in Wireless Sensing
Amit Kachroo
Sai Prashanth Chinnapalli
18
0
0
12 Oct 2022
Liesel: A Probabilistic Programming Framework for Developing
  Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Hannes Riebl
P. Wiemann
Thomas Kneib
8
2
0
22 Sep 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDL
AI4CE
UQCV
28
0
0
13 Sep 2022
Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design,
  Case Studies
Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design, Case Studies
N. Glatt-Holtz
Andrew J Holbrook
J. Krometis
Cecilia F. Mondaini
18
10
0
10 Sep 2022
Interpretable (not just posthoc-explainable) medical claims modeling for
  discharge placement to prevent avoidable all-cause readmissions or death
Interpretable (not just posthoc-explainable) medical claims modeling for discharge placement to prevent avoidable all-cause readmissions or death
Joshua C. Chang
Ted L. Chang
Carson C. Chow
R. Mahajan
Sonya Mahajan
Joe Maisog
Shashaank Vattikuti
Hongjing Xia
FAtt
OOD
37
0
0
28 Aug 2022
PAVI: Plate-Amortized Variational Inference
PAVI: Plate-Amortized Variational Inference
Louis Rouillard
Thomas Moreau
Demian Wassermann
25
1
0
10 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
40
18
0
26 May 2022
Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid
  Electric Vehicles
Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid Electric Vehicles
Jihed Khiari
Cristina Olaverri-Monreal
27
2
0
27 Apr 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
27
6
0
03 Feb 2022
Efficient Automatic Differentiation of Implicit Functions
Efficient Automatic Differentiation of Implicit Functions
C. Margossian
M. Betancourt
22
2
0
28 Dec 2021
Prediction of Energy Consumption for Variable Customer Portfolios
  Including Aleatoric Uncertainty Estimation
Prediction of Energy Consumption for Variable Customer Portfolios Including Aleatoric Uncertainty Estimation
Oliver Mey
André Schneider
Olaf Enge-Rosenblatt
Yesnier Bravo
P. Stenzel
17
6
0
01 Oct 2021
Supervising the Decoder of Variational Autoencoders to Improve
  Scientific Utility
Supervising the Decoder of Variational Autoencoders to Improve Scientific Utility
Liyun Tu
Austin Talbot
Neil Gallagher
David Carlson
DRL
32
2
0
09 Sep 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
43
40
0
09 Aug 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative
  Priors
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
13
37
0
06 Jul 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
36
2
0
23 Jun 2021
Principal Component Density Estimation for Scenario Generation Using
  Normalizing Flows
Principal Component Density Estimation for Scenario Generation Using Normalizing Flows
Eike Cramer
Alexander Mitsos
Raúl Tempone
Manuel Dahmen
29
13
0
21 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
33
23
0
12 Apr 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
41
66
0
15 Feb 2021
Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics
Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics
J. Burge
M. Bonanni
M. Ihme
Lily Hu
19
19
0
11 Dec 2020
High-Throughput Image-Based Plant Stand Count Estimation Using
  Convolutional Neural Networks
High-Throughput Image-Based Plant Stand Count Estimation Using Convolutional Neural Networks
S. Khaki
Hieu H. Pham
Ye Han
W. Kent
Lizhi Wang
34
17
0
23 Oct 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
31
79
0
17 Sep 2020
Toward Reliable Models for Authenticating Multimedia Content: Detecting
  Resampling Artifacts With Bayesian Neural Networks
Toward Reliable Models for Authenticating Multimedia Content: Detecting Resampling Artifacts With Bayesian Neural Networks
Anatol Maier
Benedikt Lorch
Christian Riess
AAML
38
17
0
28 Jul 2020
A Generalization of Otsu's Method and Minimum Error Thresholding
A Generalization of Otsu's Method and Minimum Error Thresholding
Jonathan T. Barron
25
26
0
14 Jul 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
35
199
0
22 Jun 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning
  Study
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
Learning to Fly via Deep Model-Based Reinforcement Learning
Learning to Fly via Deep Model-Based Reinforcement Learning
Philip Becker-Ehmck
Maximilian Karl
Jan Peters
Patrick van der Smagt
SSL
35
37
0
19 Mar 2020
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern
  Hardware
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware
Junpeng Lao
Christopher Suter
I. Langmore
C. Chimisov
A. Saxena
Pavel Sountsov
Dave Moore
Rif A. Saurous
Matthew D. Hoffman
Joshua V. Dillon
17
30
0
04 Feb 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
16
5
0
09 Jan 2020
12
Next