Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.11279
Cited By
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
30 November 2017
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)"
45 / 1,045 papers shown
Title
Disentangling Influence: Using Disentangled Representations to Audit Model Predictions
Charles Marx
R. L. Phillips
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
TDI
CML
MLAU
11
27
0
20 Jun 2019
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
28
120
0
19 Jun 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
20
328
0
19 Jun 2019
Image Counterfactual Sensitivity Analysis for Detecting Unintended Bias
Emily L. Denton
B. Hutchinson
Margaret Mitchell
Timnit Gebru
Andrew Zaldivar
CVBM
11
129
0
14 Jun 2019
Global and Local Interpretability for Cardiac MRI Classification
J. Clough
Ilkay Oksuz
Esther Puyol-Antón
B. Ruijsink
A. King
J. Schnabel
8
59
0
14 Jun 2019
Extracting Interpretable Concept-Based Decision Trees from CNNs
Conner Chyung
Michael Tsang
Yan Liu
FAtt
11
8
0
11 Jun 2019
Visualizing and Measuring the Geometry of BERT
Andy Coenen
Emily Reif
Ann Yuan
Been Kim
Adam Pearce
F. Viégas
Martin Wattenberg
MILM
21
415
0
06 Jun 2019
Concept Tree: High-Level Representation of Variables for More Interpretable Surrogate Decision Trees
X. Renard
Nicolas Woloszko
Jonathan Aigrain
Marcin Detyniecki
8
11
0
04 Jun 2019
Kandinsky Patterns
Heimo Mueller
Andreas Holzinger
11
31
0
03 Jun 2019
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
41
37
0
29 May 2019
Clustering and Recognition of Spatiotemporal Features through Interpretable Embedding of Sequence to Sequence Recurrent Neural Networks
Kun Su
Eli Shlizerman
28
13
0
29 May 2019
EDUCE: Explaining model Decisions through Unsupervised Concepts Extraction
Diane Bouchacourt
Ludovic Denoyer
FAtt
19
21
0
28 May 2019
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
11
148
0
28 May 2019
Why do These Match? Explaining the Behavior of Image Similarity Models
Bryan A. Plummer
Mariya I. Vasileva
Vitali Petsiuk
Kate Saenko
David A. Forsyth
XAI
FAtt
21
18
0
26 May 2019
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
23
20
0
19 Apr 2019
Deep Learning Under the Microscope: Improving the Interpretability of Medical Imaging Neural Networks
Magdalini Paschali
Muhammad Ferjad Naeem
Walter Simson
K. Steiger
M. Mollenhauer
Nassir Navab
11
19
0
05 Apr 2019
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
17
213
0
04 Apr 2019
Explaining Reinforcement Learning to Mere Mortals: An Empirical Study
Andrew Anderson
Jonathan Dodge
Amrita Sadarangani
Zoe Juozapaitis
E. Newman
Jed Irvine
Souti Chattopadhyay
Alan Fern
Margaret Burnett
FAtt
20
65
0
22 Mar 2019
Aggregating explanation methods for stable and robust explainability
Laura Rieger
Lars Kai Hansen
AAML
FAtt
27
11
0
01 Mar 2019
Regularizing Black-box Models for Improved Interpretability
Gregory Plumb
Maruan Al-Shedivat
Ángel Alexander Cabrera
Adam Perer
Eric P. Xing
Ameet Talwalkar
AAML
14
79
0
18 Feb 2019
ProtoAttend: Attention-Based Prototypical Learning
Sercan Ö. Arik
Tomas Pfister
19
19
0
17 Feb 2019
Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making
Carrie J. Cai
Emily Reif
Narayan Hegde
J. Hipp
Been Kim
...
Martin Wattenberg
F. Viégas
G. Corrado
Martin C. Stumpe
Michael Terry
30
395
0
08 Feb 2019
Towards Automatic Concept-based Explanations
Amirata Ghorbani
James Wexler
James Zou
Been Kim
FAtt
LRM
27
19
0
07 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
28
445
0
27 Jan 2019
Personalized explanation in machine learning: A conceptualization
J. Schneider
J. Handali
XAI
FAtt
20
17
0
03 Jan 2019
Interactive Naming for Explaining Deep Neural Networks: A Formative Study
M. Hamidi-Haines
Zhongang Qi
Alan Fern
Fuxin Li
Prasad Tadepalli
FAtt
HAI
14
11
0
18 Dec 2018
A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability
Xiaowei Huang
Daniel Kroening
Wenjie Ruan
M. Kwiatkowska
Youcheng Sun
Emese Thamo
Min Wu
Xinping Yi
AAML
16
50
0
18 Dec 2018
Can I trust you more? Model-Agnostic Hierarchical Explanations
Michael Tsang
Youbang Sun
Dongxu Ren
Yan Liu
FAtt
16
25
0
12 Dec 2018
Networks for Nonlinear Diffusion Problems in Imaging
Simon Arridge
A. Hauptmann
DiffM
MedIm
8
18
0
29 Nov 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
23
102
0
28 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
28
392
0
19 Nov 2018
Secure Deep Learning Engineering: A Software Quality Assurance Perspective
L. Ma
Felix Juefei Xu
Minhui Xue
Q. Hu
Sen Chen
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
AAML
17
35
0
10 Oct 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
37
77
0
09 Oct 2018
Model Cards for Model Reporting
Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
42
1,831
0
05 Oct 2018
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
18
0
0
29 Sep 2018
Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts
Samuel Carton
Qiaozhu Mei
Paul Resnick
FAtt
AAML
16
34
0
01 Sep 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
28
670
0
28 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
15
932
0
20 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
38
1,840
0
31 May 2018
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
L. Ma
Felix Juefei Xu
Fuyuan Zhang
Jiyuan Sun
Minhui Xue
...
Ting Su
Li Li
Yang Liu
Jianjun Zhao
Yadong Wang
ELM
32
617
0
20 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick D. McDaniel
OOD
AAML
8
502
0
13 Mar 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
15
241
0
09 Mar 2018
Considerations When Learning Additive Explanations for Black-Box Models
S. Tan
Giles Hooker
Paul Koch
Albert Gordo
R. Caruana
FAtt
22
20
0
26 Jan 2018
Embedding Deep Networks into Visual Explanations
Zhongang Qi
Saeed Khorram
Fuxin Li
24
27
0
15 Sep 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Previous
1
2
3
...
19
20
21