ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.11279
  4. Cited By
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

30 November 2017
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
    FAtt
ArXivPDFHTML

Papers citing "Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)"

50 / 1,045 papers shown
Title
Discovering Concept Directions from Diffusion-based Counterfactuals via Latent Clustering
Discovering Concept Directions from Diffusion-based Counterfactuals via Latent Clustering
Payal Varshney
Adriano Lucieri
Christoph Balada
Andreas Dengel
Sheraz Ahmed
DiffM
34
0
0
11 May 2025
Wasserstein Distances Made Explainable: Insights into Dataset Shifts and Transport Phenomena
Wasserstein Distances Made Explainable: Insights into Dataset Shifts and Transport Phenomena
Philip Naumann
Jacob R. Kauffmann
G. Montavon
26
0
0
09 May 2025
Human in the Latent Loop (HILL): Interactively Guiding Model Training Through Human Intuition
Human in the Latent Loop (HILL): Interactively Guiding Model Training Through Human Intuition
Daniel Geissler
L. Krupp
Vishal Banwari
David Habusch
Bo Zhou
P. Lukowicz
Jakob Karolus
31
0
0
09 May 2025
Concept-Based Unsupervised Domain Adaptation
Concept-Based Unsupervised Domain Adaptation
Xinyue Xu
Y. Hu
Hui Tang
Yi Qin
Lu Mi
Hao Wang
Xiaomeng Li
50
0
0
08 May 2025
ChannelExplorer: Exploring Class Separability Through Activation Channel Visualization
ChannelExplorer: Exploring Class Separability Through Activation Channel Visualization
Md Rahat-uz- Zaman
Bei Wang
Paul Rosen
21
0
0
06 May 2025
IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
Yuyan Ge
Kwan Ho Ryan Chan
Pablo Messina
René Vidal
38
0
0
30 Apr 2025
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
131
0
0
28 Apr 2025
What's Pulling the Strings? Evaluating Integrity and Attribution in AI Training and Inference through Concept Shift
What's Pulling the Strings? Evaluating Integrity and Attribution in AI Training and Inference through Concept Shift
Jiamin Chang
H. Li
Hammond Pearce
Ruoxi Sun
Bo-wen Li
Minhui Xue
38
0
0
28 Apr 2025
Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Emiliano Penaloza
Tianyue H. Zhan
Laurent Charlin
Mateo Espinosa Zarlenga
45
0
0
25 Apr 2025
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
155
0
0
24 Apr 2025
MAGIC: Near-Optimal Data Attribution for Deep Learning
MAGIC: Near-Optimal Data Attribution for Deep Learning
Andrew Ilyas
Logan Engstrom
TDI
39
0
0
23 Apr 2025
Disentangling Polysemantic Channels in Convolutional Neural Networks
Disentangling Polysemantic Channels in Convolutional Neural Networks
Robin Hesse
Jonas Fischer
Simone Schaub-Meyer
Stefan Roth
FAtt
MILM
55
0
0
17 Apr 2025
PCBEAR: Pose Concept Bottleneck for Explainable Action Recognition
PCBEAR: Pose Concept Bottleneck for Explainable Action Recognition
Jongseo Lee
Wooil Lee
Gyeong-Moon Park
Seong Tae Kim
Jinwoo Choi
33
0
0
17 Apr 2025
Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
Mahdi Alehdaghi
Rajarshi Bhattacharya
Pourya Shamsolmoali
Rafael M. O. Cruz
Maguelonne Heritier
Eric Granger
36
0
0
16 Apr 2025
C-SHAP for time series: An approach to high-level temporal explanations
C-SHAP for time series: An approach to high-level temporal explanations
Annemarie Jutte
Faizan Ahmed
Jeroen Linssen
Maurice van Keulen
AI4TS
26
0
0
15 Apr 2025
Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Zhenyu Yang
Haiming Zhu
Rihui Zhang
Haipeng Zhang
Jianliang Wang
Chunhao Wang
Minbin Chen
F. Yin
MedIm
38
0
0
15 Apr 2025
Towards Spatially-Aware and Optimally Faithful Concept-Based Explanations
Towards Spatially-Aware and Optimally Faithful Concept-Based Explanations
Shubham Kumar
Dwip Dalal
Narendra Ahuja
21
0
0
15 Apr 2025
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
57
0
0
14 Apr 2025
Ordinary Least Squares as an Attention Mechanism
Ordinary Least Squares as an Attention Mechanism
Philippe Goulet Coulombe
17
0
0
13 Apr 2025
Explainable Artificial Intelligence techniques for interpretation of food datasets: a review
Explainable Artificial Intelligence techniques for interpretation of food datasets: a review
Leonardo Arrighi
Ingrid Alves de Moraes
Marco Zullich
Michele Simonato
Douglas Fernandes Barbin
Sylvio Barbon Junior
21
0
0
12 Apr 2025
On Background Bias of Post-Hoc Concept Embeddings in Computer Vision DNNs
On Background Bias of Post-Hoc Concept Embeddings in Computer Vision DNNs
Gesina Schwalbe
Georgii Mikriukov
Edgar Heinert
Stavros Gerolymatos
Mert Keser
Alois Knoll
Matthias Rottmann
Annika Mütze
31
0
0
11 Apr 2025
A Meaningful Perturbation Metric for Evaluating Explainability Methods
A Meaningful Perturbation Metric for Evaluating Explainability Methods
Danielle Cohen
Hila Chefer
Lior Wolf
AAML
25
0
0
09 Apr 2025
Concept Extraction for Time Series with ECLAD-ts
Concept Extraction for Time Series with ECLAD-ts
Antonia Holzapfel
Andres Felipe Posada-Moreno
Sebastian Trimpe
AI4TS
21
0
0
07 Apr 2025
Activation Patching for Interpretable Steering in Music Generation
Activation Patching for Interpretable Steering in Music Generation
Simone Facchiano
Giorgio Strano
Donato Crisostomi
Irene Tallini
Tommaso Mencattini
Fabio Galasso
Emanuele Rodolà
LLMSV
24
0
0
06 Apr 2025
Interpretable Multimodal Learning for Tumor Protein-Metal Binding: Progress, Challenges, and Perspectives
Interpretable Multimodal Learning for Tumor Protein-Metal Binding: Progress, Challenges, and Perspectives
Xiaokun Liu
Sayedmohammadreza Rastegari
Yijun Huang
Sxe Chang Cheong
Weikang Liu
...
Sina Tabakhi
Xianyuan Liu
Zheqing Zhu
Wei Sang
Haiping Lu
29
0
0
04 Apr 2025
V-CEM: Bridging Performance and Intervenability in Concept-based Models
V-CEM: Bridging Performance and Intervenability in Concept-based Models
Francesco De Santis
Gabriele Ciravegna
Philippe Bich
Danilo Giordano
Tania Cerquitelli
32
0
0
04 Apr 2025
LLM Social Simulations Are a Promising Research Method
LLM Social Simulations Are a Promising Research Method
Jacy Reese Anthis
Ryan Liu
Sean M. Richardson
Austin C. Kozlowski
Bernard Koch
James A. Evans
Erik Brynjolfsson
Michael S. Bernstein
ALM
51
5
0
03 Apr 2025
Fourier Feature Attribution: A New Efficiency Attribution Method
Fourier Feature Attribution: A New Efficiency Attribution Method
Zechen Liu
Feiyang Zhang
Wei Song
X. Li
Wei Wei
FAtt
57
0
0
02 Apr 2025
Uncertainty Propagation in XAI: A Comparison of Analytical and Empirical Estimators
Uncertainty Propagation in XAI: A Comparison of Analytical and Empirical Estimators
Teodor Chiaburu
Felix Bießmann
Frank Haußer
23
0
0
01 Apr 2025
LLMs for Explainable AI: A Comprehensive Survey
LLMs for Explainable AI: A Comprehensive Survey
Ahsan Bilal
David Ebert
Beiyu Lin
72
1
0
31 Mar 2025
From Colors to Classes: Emergence of Concepts in Vision Transformers
From Colors to Classes: Emergence of Concepts in Vision Transformers
Teresa Dorszewski
Lenka Tětková
Robert Jenssen
Lars Kai Hansen
Kristoffer Wickstrøm
37
0
0
31 Mar 2025
Language Guided Concept Bottleneck Models for Interpretable Continual Learning
Language Guided Concept Bottleneck Models for Interpretable Continual Learning
Lu Yu
Haoyu Han
Zhe Tao
Hantao Yao
Changsheng Xu
CLL
60
0
0
30 Mar 2025
TraNCE: Transformative Non-linear Concept Explainer for CNNs
TraNCE: Transformative Non-linear Concept Explainer for CNNs
Ugochukwu Ejike Akpudo
Yongsheng Gao
J. Zhou
Andrew Lewis
68
0
0
26 Mar 2025
Hacia la interpretabilidad de la detección anticipada de riesgos de depresión utilizando grandes modelos de lenguaje
Hacia la interpretabilidad de la detección anticipada de riesgos de depresión utilizando grandes modelos de lenguaje
Horacio Thompson
Maximiliano Sapino
Edgardo Ferretti
M. Errecalde
53
0
0
26 Mar 2025
Towards Human-Understandable Multi-Dimensional Concept Discovery
Towards Human-Understandable Multi-Dimensional Concept Discovery
Arne Grobrugge
Niklas Kühl
G. Satzger
Philipp Spitzer
44
0
0
24 Mar 2025
Explaining Domain Shifts in Language: Concept erasing for Interpretable Image Classification
Explaining Domain Shifts in Language: Concept erasing for Interpretable Image Classification
Zequn Zeng
Yudi Su
Jianqiao Sun
Tiansheng Wen
Hao Zhang
Zhengjue Wang
Bo Chen
Hongwei Liu
Jiawei Ma
VLM
60
0
0
24 Mar 2025
On Explaining (Large) Language Models For Code Using Global Code-Based Explanations
On Explaining (Large) Language Models For Code Using Global Code-Based Explanations
David Nader-Palacio
Dipin Khati
Daniel Rodríguez-Cárdenas
Alejandro Velasco
Denys Poshyvanyk
LRM
44
0
0
21 Mar 2025
Representational Similarity via Interpretable Visual Concepts
Representational Similarity via Interpretable Visual Concepts
Neehar Kondapaneni
Oisin Mac Aodha
Pietro Perona
DRL
160
0
0
19 Mar 2025
Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Giovanni Floreale
Piero Baraldi
Enrico Zio
Olga Fink
40
0
0
19 Mar 2025
Using the Tools of Cognitive Science to Understand Large Language Models at Different Levels of Analysis
Using the Tools of Cognitive Science to Understand Large Language Models at Different Levels of Analysis
Alexander Ku
Declan Campbell
Xuechunzi Bai
Jiayi Geng
Ryan Liu
...
Ilia Sucholutsky
Veniamin Veselovsky
Liyi Zhang
Jian-Qiao Zhu
Thomas L. Griffiths
ELM
88
2
0
17 Mar 2025
ASIDE: Architectural Separation of Instructions and Data in Language Models
ASIDE: Architectural Separation of Instructions and Data in Language Models
Egor Zverev
Evgenii Kortukov
Alexander Panfilov
Soroush Tabesh
Alexandra Volkova
Sebastian Lapuschkin
Wojciech Samek
Christoph H. Lampert
AAML
54
1
0
13 Mar 2025
Discovering Influential Neuron Path in Vision Transformers
Discovering Influential Neuron Path in Vision Transformers
Yifan Wang
Yifei Liu
Yingdong Shi
C. Li
Anqi Pang
Sibei Yang
Jingyi Yu
Kan Ren
ViT
69
0
0
12 Mar 2025
C^2 ATTACK: Towards Representation Backdoor on CLIP via Concept Confusion
Lijie Hu
Junchi Liao
Weimin Lyu
Shaopeng Fu
Tianhao Huang
Shu Yang
Guimin Hu
Di Wang
AAML
65
0
0
12 Mar 2025
A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification
A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification
Basudha Pal
Siyuan
Huang
56
0
0
09 Mar 2025
Exploring Interpretability for Visual Prompt Tuning with Hierarchical Concepts
Yubin Wang
Xinyang Jiang
De Cheng
Xiangqian Zhao
Zilong Wang
Dongsheng Li
Cairong Zhao
VLM
72
0
0
08 Mar 2025
Towards Locally Explaining Prediction Behavior via Gradual Interventions and Measuring Property Gradients
Niklas Penzel
Joachim Denzler
FAtt
50
0
0
07 Mar 2025
Post-Hoc Concept Disentanglement: From Correlated to Isolated Concept Representations
Eren Erogullari
Sebastian Lapuschkin
Wojciech Samek
Frederik Pahde
LLMSV
CoGe
62
0
0
07 Mar 2025
Causally Reliable Concept Bottleneck Models
Giovanni De Felice
Arianna Casanova Flores
Francesco De Santis
Silvia Santini
Johannes Schneider
Pietro Barbiero
Alberto Termine
74
2
0
06 Mar 2025
Conceptualizing Uncertainty
Isaac Roberts
Alexander Schulz
Sarah Schroeder
Fabian Hinder
Barbara Hammer
UD
77
0
0
05 Mar 2025
Projecting Assumptions: The Duality Between Sparse Autoencoders and Concept Geometry
Sai Sumedh R. Hindupur
Ekdeep Singh Lubana
Thomas Fel
Demba Ba
42
4
0
03 Mar 2025
1234...192021
Next