Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.11443
Cited By
ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases
30 November 2017
Pierre Stock
Moustapha Cissé
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases"
15 / 15 papers shown
Title
When does dough become a bagel? Analyzing the remaining mistakes on ImageNet
Vijay Vasudevan
Benjamin Caine
Raphael Gontijo-Lopes
Sara Fridovich-Keil
Rebecca Roelofs
VLM
UQCV
35
57
0
09 May 2022
A Systematic Study of Bias Amplification
Melissa Hall
L. V. D. van der Maaten
Laura Gustafson
Maxwell Jones
Aaron B. Adcock
102
70
0
27 Jan 2022
A generalizable saliency map-based interpretation of model outcome
Shailja Thakur
S. Fischmeister
AAML
FAtt
MILM
22
2
0
16 Jun 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
30
387
0
21 Jan 2020
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan
Angela Fan
Adina Williams
Jack Urbanek
Douwe Kiela
Jason Weston
22
205
0
10 Nov 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
19
62
0
29 Oct 2019
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
L. V. D. van der Maaten
33
261
0
06 Jun 2019
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
15
387
0
05 Aug 2018
Troubling Trends in Machine Learning Scholarship
Zachary Chase Lipton
Jacob Steinhardt
21
288
0
09 Jul 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
Exploring the Limits of Weakly Supervised Pretraining
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
L. V. D. van der Maaten
VLM
59
1,356
0
02 May 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick D. McDaniel
OOD
AAML
8
502
0
13 Mar 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
56
1,791
0
30 Nov 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1