Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.00673
Cited By
Towards Robust Neural Networks via Random Self-ensemble
2 December 2017
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Robust Neural Networks via Random Self-ensemble"
42 / 242 papers shown
Title
Noise as a Resource for Learning in Knowledge Distillation
Elahe Arani
F. Sarfraz
Bahram Zonooz
8
6
0
11 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
24
2
0
03 Oct 2019
An Empirical Investigation of Randomized Defenses against Adversarial Attacks
Yannik Potdevin
Dirk Nowotka
Vijay Ganesh
AAML
22
4
0
12 Sep 2019
Are Adversarial Robustness and Common Perturbation Robustness Independent Attributes ?
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
12
40
0
04 Sep 2019
Efficient Bidirectional Neural Machine Translation
Xu Tan
Yingce Xia
Lijun Wu
Tao Qin
13
3
0
25 Aug 2019
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses
Xiao Wang
Siyue Wang
Pin-Yu Chen
Yanzhi Wang
Brian Kulis
Xue Lin
S. Chin
AAML
6
42
0
20 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Joint Adversarial Training: Incorporating both Spatial and Pixel Attacks
Haichao Zhang
Jianyu Wang
12
4
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
23
130
0
24 Jul 2019
Adaptive Regularization via Residual Smoothing in Deep Learning Optimization
Jung-Kyun Cho
Junseok Kwon
Byung-Woo Hong
26
1
0
23 Jul 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
J. Lee
AAML
13
107
0
19 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Bo-wen Li
Duane S. Boning
Cho-Jui Hsieh
AAML
17
343
0
14 Jun 2019
Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers
Guang-He Lee
Yang Yuan
Shiyu Chang
Tommi Jaakkola
AAML
17
122
0
12 Jun 2019
E-LPIPS: Robust Perceptual Image Similarity via Random Transformation Ensembles
M. Kettunen
Erik Härkönen
J. Lehtinen
AAML
16
61
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
25
535
0
09 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
20
101
0
08 Jun 2019
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu
Tesi Xiao
Si Si
Qin Cao
Sanjiv Kumar
Cho-Jui Hsieh
14
133
0
05 Jun 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
32
21
0
30 May 2019
ProbAct: A Probabilistic Activation Function for Deep Neural Networks
Kumar Shridhar
JoonHo Lee
Hideaki Hayashi
Purvanshi Mehta
Brian Kenji Iwana
Seokjun Kang
S. Uchida
Sheraz Ahmed
Andreas Dengel
DiffM
AAML
17
32
0
26 May 2019
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
Yandong Li
Lijun Li
Liqiang Wang
Tong Zhang
Boqing Gong
AAML
15
245
0
01 May 2019
Dropping Pixels for Adversarial Robustness
Hossein Hosseini
Sreeram Kannan
Radha Poovendran
14
16
0
01 May 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
14
654
0
03 Apr 2019
Regional Homogeneity: Towards Learning Transferable Universal Adversarial Perturbations Against Defenses
Yingwei Li
S. Bai
Cihang Xie
Zhenyu A. Liao
Xiaohui Shen
Alan Yuille
AAML
39
49
0
01 Apr 2019
Robust Neural Networks using Randomized Adversarial Training
Alexandre Araujo
Laurent Meunier
Rafael Pinot
Benjamin Négrevergne
AAML
OOD
17
36
0
25 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,990
0
08 Feb 2019
Theoretical evidence for adversarial robustness through randomization
Rafael Pinot
Laurent Meunier
Alexandre Araujo
H. Kashima
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
36
82
0
04 Feb 2019
Robustness Certificates Against Adversarial Examples for ReLU Networks
Sahil Singla
S. Feizi
AAML
17
21
0
01 Feb 2019
Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa
Moinuddin K. Qureshi
AAML
FedML
12
132
0
28 Jan 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
28
445
0
27 Jan 2019
Sitatapatra: Blocking the Transfer of Adversarial Samples
Ilia Shumailov
Xitong Gao
Yiren Zhao
Robert D. Mullins
Ross J. Anderson
Chengzhong Xu
AAML
GAN
12
14
0
23 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao-quan Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
12
144
0
15 Jan 2019
Learning Transferable Adversarial Examples via Ghost Networks
Yingwei Li
S. Bai
Yuyin Zhou
Cihang Xie
Zhishuai Zhang
Alan Yuille
AAML
34
134
0
09 Dec 2018
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
188
272
0
03 Dec 2018
Adversarial Machine Learning And Speech Emotion Recognition: Utilizing Generative Adversarial Networks For Robustness
S. Latif
R. Rana
Junaid Qadir
GAN
AAML
21
42
0
28 Nov 2018
Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks
Jianyu Wang
Haichao Zhang
OOD
AAML
18
118
0
26 Nov 2018
Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack
Adnan Siraj Rakin
Zhezhi He
Deliang Fan
AAML
11
287
0
22 Nov 2018
Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding
Yao Li
Martin Renqiang Min
Wenchao Yu
Cho-Jui Hsieh
T. C. Lee
E. Kruus
OT
19
7
0
19 Nov 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
16
171
0
01 Oct 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao-quan Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
24
686
0
25 Apr 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
27
924
0
09 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
14
463
0
31 Jan 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Previous
1
2
3
4
5