Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01524
Cited By
Collecting Telemetry Data Privately
5 December 2017
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Collecting Telemetry Data Privately"
50 / 346 papers shown
Title
BRR: Preserving Privacy of Text Data Efficiently on Device
Ricardo Silva Carvalho
Theodore Vasiloudis
Oluwaseyi Feyisetan
106
7
0
16 Jul 2021
Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy
Yipeng Zhou
Xuezheng Liu
Yao Fu
Di Wu
Chao Li
Shui Yu
FedML
66
2
0
05 Jul 2021
Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches
Hao Wu
Anthony Wirth
FedML
36
5
0
15 Jun 2021
A Shuffling Framework for Local Differential Privacy
Casey Meehan
A. Chowdhury
Kamalika Chaudhuri
Somesh Jha
43
0
0
11 Jun 2021
Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
FedML
91
50
0
08 Jun 2021
Generalized Linear Bandits with Local Differential Privacy
Yuxuan Han
Zhipeng Liang
Yang Wang
Jiheng Zhang
85
32
0
07 Jun 2021
Privately Learning Mixtures of Axis-Aligned Gaussians
Ishaq Aden-Ali
H. Ashtiani
Christopher Liaw
FedML
77
12
0
03 Jun 2021
Instance-optimal Mean Estimation Under Differential Privacy
Ziyue Huang
Yuting Liang
K. Yi
71
57
0
01 Jun 2021
Locally private online change point detection
Thomas B. Berrett
Yi Yu
61
13
0
22 May 2021
The Permute-and-Flip Mechanism is Identical to Report-Noisy-Max with Exponential Noise
Zeyu Ding
Daniel Kifer
S. Saghaian
Thomas Steinke
Yuxin Wang
Yingtai Xiao
Qiang Yan
79
29
0
15 May 2021
On the Renyi Differential Privacy of the Shuffle Model
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
A. Suresh
Peter Kairouz
97
44
0
11 May 2021
Locally Private k-Means in One Round
Alisa Chang
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
89
32
0
20 Apr 2021
The Role of Cross-Silo Federated Learning in Facilitating Data Sharing in the Agri-Food Sector
A. Durrant
Milan Markovic
David Matthews
David May
J. Enright
Georgios Leontidis
FedML
72
72
0
14 Apr 2021
Preventing Manipulation Attack in Local Differential Privacy using Verifiable Randomization Mechanism
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
AAML
58
31
0
14 Apr 2021
Frequency Estimation Under Multiparty Differential Privacy: One-shot and Streaming
Ziyue Huang
Yuan Qiu
K. Yi
Graham Cormode
67
25
0
05 Apr 2021
High-Dimensional Differentially-Private EM Algorithm: Methods and Near-Optimal Statistical Guarantees
Zhe Zhang
Linjun Zhang
FedML
63
3
0
01 Apr 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
72
31
0
19 Mar 2021
Wide Network Learning with Differential Privacy
Huanyu Zhang
Ilya Mironov
Meisam Hejazinia
68
27
0
01 Mar 2021
Asymmetric Differential Privacy
Shun Takagi
Yang Cao
Masatoshi Yoshikawa
127
7
0
01 Mar 2021
Discrete Distribution Estimation with Local Differential Privacy: A Comparative Analysis
Ba-Dung Le
T. Zia
13
2
0
25 Feb 2021
Lossless Compression of Efficient Private Local Randomizers
Vitaly Feldman
Kunal Talwar
65
40
0
24 Feb 2021
Learning with User-Level Privacy
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
106
91
0
23 Feb 2021
Differential Privacy for Government Agencies -- Are We There Yet?
Joerg Drechsler
97
22
0
17 Feb 2021
Revenue Attribution on iOS 14 using Conversion Values in F2P Games
Frederick Ayala-Gómez
Ismo Horppu
Erlin Gülbenkoğlu
Vesa Siivola
Balázs Pejó
23
0
0
16 Feb 2021
Private Prediction Sets
Anastasios Nikolas Angelopoulos
Stephen Bates
Tijana Zrnic
Michael I. Jordan
86
12
0
11 Feb 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
118
153
0
11 Feb 2021
Federated Learning with Local Differential Privacy: Trade-offs between Privacy, Utility, and Communication
Muah Kim
Onur Gunlu
Rafael F. Schaefer
FedML
166
120
0
09 Feb 2021
Dopamine: Differentially Private Federated Learning on Medical Data
Mohammad Malekzadeh
Burak Hasircioglu
N. Mital
K. Katarya
M. E. Ozfatura
Deniz Gündüz
OOD
FedML
101
51
0
27 Jan 2021
Randori: Local Differential Privacy for All
Boel Nelson
16
2
0
27 Jan 2021
Differentially Private SGD with Non-Smooth Losses
Puyu Wang
Yunwen Lei
Yiming Ying
Hai Zhang
73
28
0
22 Jan 2021
On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration Times
Yao Fu
Yipeng Zhou
Di Wu
Shui Yu
Yonggang Wen
Chao Li
FedML
51
10
0
11 Jan 2021
Secure Hot Path Crowdsourcing with Local Differential Privacy under Fog Computing Architecture
Mengmeng Yang
Ivan Tjuawinata
Kwok Yan Lam
Jun Zhao
Lin Sun
FedML
48
24
0
26 Dec 2020
Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
86
162
0
23 Dec 2020
Research Challenges in Designing Differentially Private Text Generation Mechanisms
Oluwaseyi Feyisetan
Abhinav Aggarwal
Zekun Xu
Nathanael Teissier
124
8
0
10 Dec 2020
Compressive Sensing Approaches for Sparse Distribution Estimation Under Local Privacy
Zhongzheng Xiong
Jialin Sun
Xiaojun Mao
Jian Wang
Sha Ying
Zengfeng Huang
13
2
0
03 Dec 2020
Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms
Zeyu Ding
Yuxin Wang
Yingtai Xiao
Guanhong Wang
Qiang Yan
Daniel Kifer
56
8
0
02 Dec 2020
Robust and Private Learning of Halfspaces
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thao Nguyen
69
12
0
30 Nov 2020
Differentially Private Synthetic Data: Applied Evaluations and Enhancements
Lucas Rosenblatt
Xiao-Yang Liu
Samira Pouyanfar
Eduardo de Leon
Anuj M. Desai
Joshua Allen
SyDa
65
66
0
11 Nov 2020
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
96
21
0
08 Nov 2020
Strongly universally consistent nonparametric regression and classification with privatised data
Thomas B. Berrett
László Gyorfi
Harro Walk
50
16
0
31 Oct 2020
Differentially Private ADMM Algorithms for Machine Learning
Tao Xu
Fanhua Shang
Yuanyuan Liu
Hongying Liu
Longjie Shen
Maoguo Gong
76
18
0
31 Oct 2020
A Members First Approach to Enabling LinkedIn's Labor Market Insights at Scale
Ryan M. Rogers
Adrian Rivera Cardoso
Koray Mancuhan
Akash Kaura
Nikhil T. Gahlawat
Neha Jain
Paul Ko
P. Ahammad
80
11
0
27 Oct 2020
Federated Bandit: A Gossiping Approach
Zhaowei Zhu
Jingxuan Zhu
Ji Liu
Yang Liu
FedML
248
85
0
24 Oct 2020
Representation Learning for High-Dimensional Data Collection under Local Differential Privacy
Alex Mansbridge
G. Barbour
Davide Piras
Michael Murray
Christopher Frye
Ilya Feige
David Barber
58
1
0
23 Oct 2020
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
Di Wang
Hanshen Xiao
S. Devadas
Jinhui Xu
76
57
0
21 Oct 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
121
44
0
19 Oct 2020
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization
P. Subramani
Nicholas Vadivelu
Gautam Kamath
101
83
0
18 Oct 2020
Locally Differentially Private Analysis of Graph Statistics
Jacob Imola
Takao Murakami
Kamalika Chaudhuri
134
96
0
17 Oct 2020
Toward Evaluating Re-identification Risks in the Local Privacy Model
Takao Murakami
Kenta Takahashi
AAML
62
10
0
16 Oct 2020
A Comprehensive Survey on Local Differential Privacy Toward Data Statistics and Analysis
Teng Wang
Xuefeng Zhang
Xuefeng Zhang
Xinyu Yang
90
88
0
11 Oct 2020
Previous
1
2
3
4
5
6
7
Next