Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01524
Cited By
Collecting Telemetry Data Privately
5 December 2017
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Collecting Telemetry Data Privately"
50 / 346 papers shown
Title
Differentially Private Label Protection in Split Learning
Xin Yang
Jiankai Sun
Yuanshun Yao
Junyuan Xie
Chong-Jun Wang
FedML
100
36
0
04 Mar 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
80
12
0
03 Mar 2022
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
136
54
0
01 Mar 2022
Degree-Preserving Randomized Response for Graph Neural Networks under Local Differential Privacy
Seira Hidano
Takao Murakami
70
9
0
21 Feb 2022
Using Illustrations to Communicate Differential Privacy Trust Models: An Investigation of Users' Comprehension, Perception, and Data Sharing Decision
Aiping Xiong
Chuhao Wu
Tianhao Wang
R. Proctor
Jeremiah Blocki
Ninghui Li
S. Jha
54
13
0
21 Feb 2022
Nonparametric extensions of randomized response for private confidence sets
Ian Waudby-Smith
Zhiwei Steven Wu
Aaditya Ramdas
81
9
0
17 Feb 2022
Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne
C. Gastaud
Nicolas Grislain
Aurélien Garivier
Rémi Gribonval
38
8
0
15 Feb 2022
One-bit Submission for Locally Private Quasi-MLE: Its Asymptotic Normality and Limitation
Hajime Ono
Kazuhiro Minami
H. Hino
42
0
0
15 Feb 2022
Privacy Concerns Raised by Pervasive User Data Collection From Cyberspace and Their Countermeasures
Yinhao Jiang
Ba-Dung Le
T. Zia
Praveen Gauravaram
37
1
0
09 Feb 2022
Rainbow Differential Privacy
Ziqi Zhou
Onur Gunlu
Rafael G. L. DÓliveira
Muriel Médard
Parastoo Sadeghi
Rafael F. Schaefer
51
3
0
08 Feb 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation
Di Zhuang
Mingchen Li
Jerome Chang
FedML
21
2
0
07 Feb 2022
Aggregation and Transformation of Vector-Valued Messages in the Shuffle Model of Differential Privacy
Mary Scott
Graham Cormode
Carsten Maple
80
11
0
31 Jan 2022
Plume: Differential Privacy at Scale
Kareem Amin
Jennifer Gillenwater
Matthew Joseph
Alex Kulesza
Sergei Vassilvitskii
61
9
0
27 Jan 2022
Towards Private Learning on Decentralized Graphs with Local Differential Privacy
Wanyu Lin
Baochun Li
Cong Wang
FedML
92
47
0
23 Jan 2022
Differentially Private SGDA for Minimax Problems
Zhenhuan Yang
Shu Hu
Yunwen Lei
Kush R. Varshney
Siwei Lyu
Yiming Ying
68
21
0
22 Jan 2022
Reducing Noise Level in Differential Privacy through Matrix Masking
A. Ding
Samuel S. Wu
G. Miao
Shigang Chen
61
2
0
11 Jan 2022
Optimal and Differentially Private Data Acquisition: Central and Local Mechanisms
Alireza Fallah
A. Makhdoumi
Azarakhsh Malekian
Asuman Ozdaglar
FedML
95
32
0
10 Jan 2022
On robustness and local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
70
26
0
03 Jan 2022
Randomize the Future: Asymptotically Optimal Locally Private Frequency Estimation Protocol for Longitudinal Data
O. Ohrimenko
Anthony Wirth
Hao Wu
28
5
0
22 Dec 2021
Randomized Response Mechanisms for Differential Privacy Data Analysis: Bounds and Applications
Fei Ma
Ping Wang
58
5
0
14 Dec 2021
Applying the Shuffle Model of Differential Privacy to Vector Aggregation
Mary Scott
Graham Cormode
Carsten Maple
FedML
95
3
0
10 Dec 2021
OPTT: Optimal Piecewise Transformation Technique for Analyzing Numerical Data under Local Differential Privacy
Fei Ma
Renbo Zhu
Ping Wang
43
1
0
09 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
71
47
0
07 Dec 2021
Locally Differentially Private Sparse Vector Aggregation
Mingxun Zhou
Tianhao Wang
T-H. Hubert Chan
Giulia Fanti
E. Shi
FedML
100
29
0
07 Dec 2021
Optimum Noise Mechanism for Differentially Private Queries in Discrete Finite Sets
Sachin Kadam
Anna Scaglione
Nikhil Ravi
S. Peisert
B. Lunghino
Aram Shumavon
32
0
0
23 Nov 2021
Poisoning Attacks to Local Differential Privacy Protocols for Key-Value Data
Yongji Wu
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
61
34
0
22 Nov 2021
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
Chinedum Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
106
52
0
09 Nov 2021
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
44
14
0
08 Nov 2021
Improving the utility of locally differentially private protocols for longitudinal and multidimensional frequency estimates
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
X. Xiao
50
29
0
08 Nov 2021
Locally Differentially Private Bayesian Inference
Tejas D. Kulkarni
Hibiki Ito
Samuel Kaski
Antti Honkela
73
2
0
27 Oct 2021
An Uncertainty Principle is a Price of Privacy-Preserving Microdata
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
S. Garfinkel
Daniel Kifer
Philip Leclerc
William Sexton
Ashley Simpson
Christine Task
Pavel I Zhuravlev
72
16
0
25 Oct 2021
User-Level Private Learning via Correlated Sampling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
125
13
0
21 Oct 2021
AHEAD: Adaptive Hierarchical Decomposition for Range Query under Local Differential Privacy
L. Du
Zhikun Zhang
Shaojie Bai
Changchang Liu
S. Ji
Peng Cheng
Jiming Chen
142
38
0
14 Oct 2021
Infinitely Divisible Noise in the Low Privacy Regime
Rasmus Pagh
N. Stausholm
FedML
50
2
0
13 Oct 2021
"I need a better description'': An Investigation Into User Expectations For Differential Privacy
Rachel Cummings
Gabriel Kaptchuk
Elissa M. Redmiles
81
84
0
13 Oct 2021
Offset-Symmetric Gaussians for Differential Privacy
Parastoo Sadeghi
Mehdi Korki
78
8
0
13 Oct 2021
Task-aware Privacy Preservation for Multi-dimensional Data
Jiangnan Cheng
A. Tang
Sandeep P. Chinchali
68
7
0
05 Oct 2021
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
127
37
0
27 Sep 2021
A Validated Privacy-Utility Preserving Recommendation System with Local Differential Privacy
Seryne Rahali
M. Laurent
Souha Masmoudi
Charles Roux
Brice Mazeau
15
7
0
23 Sep 2021
The power of private likelihood-ratio tests for goodness-of-fit in frequency tables
Emanuele Dolera
Stefano Favaro
23
1
0
20 Sep 2021
DPGen: Automated Program Synthesis for Differential Privacy
Yuxin Wang
Zeyu Ding
Yingtai Xiao
Daniel Kifer
Qiang Yan
SyDa
78
12
0
15 Sep 2021
Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
Xiaokui Xiao
53
27
0
15 Sep 2021
Statistical Quantification of Differential Privacy: A Local Approach
Önder Askin
T. Kutta
Holger Dette
78
15
0
21 Aug 2021
Real-World Trajectory Sharing with Local Differential Privacy
Teddy Cunningham
Graham Cormode
Hakan Ferhatosmanoglu
D. Srivastava
60
50
0
04 Aug 2021
Bit-efficient Numerical Aggregation and Stronger Privacy for Trust in Federated Analytics
Graham Cormode
I. Markov
FedML
55
10
0
03 Aug 2021
Privacy-Aware Rejection Sampling
Jordan Awan
Vinayak A. Rao
63
7
0
02 Aug 2021
Faster Rates of Private Stochastic Convex Optimization
Jinyan Su
Lijie Hu
Di Wang
53
13
0
31 Jul 2021
Selective MPC: Distributed Computation of Differentially Private Key-Value Statistics
Thomas Humphries
Rasoul Akhavan Mahdavi
Shannon Veitch
Florian Kerschbaum
69
12
0
26 Jul 2021
High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data
Lijie Hu
Shuo Ni
Hanshen Xiao
Di Wang
132
53
0
23 Jul 2021
Renyi Differential Privacy of the Subsampled Shuffle Model in Distributed Learning
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
69
21
0
19 Jul 2021
Previous
1
2
3
4
5
6
7
Next