Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01524
Cited By
Collecting Telemetry Data Privately
5 December 2017
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Collecting Telemetry Data Privately"
50 / 346 papers shown
Title
Communication Cost Reduction for Subgraph Counting under Local Differential Privacy via Hash Functions
Quentin Hillebrand
Vorapong Suppakitpaisarn
Tetsuo Shibuya
71
3
0
12 Dec 2023
QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution
Zixi Wang
M. C. Gursoy
FedML
78
1
0
10 Dec 2023
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
76
1
0
09 Dec 2023
Local Differentially Private Heavy Hitter Detection in Data Streams with Bounded Memory
Xiaochen Li
Weiran Liu
Jian Lou
Yuan Hong
Lei Zhang
Zhan Qin
Kui Ren
FedML
34
10
0
27 Nov 2023
Are Normalizing Flows the Key to Unlocking the Exponential Mechanism?
Robert A. Bridges
Vandy J. Tombs
Christopher B. Stanley
38
1
0
15 Nov 2023
Local Differential Privacy for Smart Meter Data Sharing
Yashothara Shanmugarasa
M. Chamikara
Hye-Young Paik
S. Kanhere
Liming Zhu
13
1
0
08 Nov 2023
Bounded and Unbiased Composite Differential Privacy
Kai Zhang
Yanjun Zhang
Ruoxi Sun
Pei-Wei Tsai
M. Hassan
Xingliang Yuan
Minhui Xue
Jinjun Chen
85
32
0
04 Nov 2023
Decentralised, Scalable and Privacy-Preserving Synthetic Data Generation
Vishal Ramesh
Rui Zhao
Naman Goel
54
1
0
30 Oct 2023
Within-Dataset Disclosure Risk for Differential Privacy
Zhiru Zhu
Raul Castro Fernandez
63
0
0
19 Oct 2023
Near-optimal Differentially Private Client Selection in Federated Settings
Syed Eqbal Alam
Dhirendra Shukla
Shrisha Rao
FedML
50
3
0
13 Oct 2023
A Survey of Data Security: Practices from Cybersecurity and Challenges of Machine Learning
Padmaksha Roy
Jaganmohan Chandrasekaran
Erin Lanus
Laura J. Freeman
Jeremy Werner
57
4
0
06 Oct 2023
User-Level Differential Privacy With Few Examples Per User
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Raghu Meka
Chiyuan Zhang
89
12
0
21 Sep 2023
Striking a Balance: An Optimal Mechanism Design for Heterogenous Differentially Private Data Acquisition for Logistic Regression
Ameya Anjarlekar
Rasoul Etesami
R. Srikant
113
3
0
19 Sep 2023
Evaluating the Impact of Local Differential Privacy on Utility Loss via Influence Functions
Alycia N. Carey
Minh-Hao Van
Xintao Wu
44
1
0
15 Sep 2023
DP-PQD: Privately Detecting Per-Query Gaps In Synthetic Data Generated By Black-Box Mechanisms
Shweta Patwa
Danyu Sun
Amir Gilad
Ashwin Machanavajjhala
Sudeepa Roy
43
1
0
15 Sep 2023
Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach
Karuna Bhaila
Wen Huang
Yongkai Wu
Xintao Wu
44
7
0
15 Sep 2023
Generalized Rainbow Differential Privacy
Yuzhou Gu
Ziqi Zhou
Onur Gunlu
Rafael G. L. DÓliveira
Parastoo Sadeghi
Muriel Médard
Rafael F. Schaefer
103
1
0
11 Sep 2023
Share Your Representation Only: Guaranteed Improvement of the Privacy-Utility Tradeoff in Federated Learning
Zebang Shen
Jiayuan Ye
Anmin Kang
Hamed Hassani
Reza Shokri
FedML
90
18
0
11 Sep 2023
Differentially Private Aggregation via Imperfect Shuffling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Jelani Nelson
Samson Zhou
FedML
104
1
0
28 Aug 2023
Decentralized Graph Neural Network for Privacy-Preserving Recommendation
Xiaolin Zheng
Zhongyu Wang
Chaochao Chen
Jiashu Qian
Yao Yang
FedML
61
8
0
15 Aug 2023
A Floating-Point Secure Implementation of the Report Noisy Max with Gap Mechanism
Zeyu Ding
J. Durrell
Daniel Kifer
Prottay Protivash
Guanhong Wang
Yuxin Wang
Yingtai Xiao
Qiang Yan
40
1
0
15 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
154
14
0
27 Jul 2023
Trajectory Data Collection with Local Differential Privacy
Yuemin Zhang
Qingqing Ye
Rui Chen
Haibo Hu
Qilong Han
99
22
0
18 Jul 2023
Saibot: A Differentially Private Data Search Platform
Zezhou Huang
Jiaxiang Liu
Daniel Alabi
Raul Castro Fernandez
Eugene Wu
49
7
0
01 Jul 2023
About the Cost of Central Privacy in Density Estimation
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
61
3
0
26 Jun 2023
PrivSketch: A Private Sketch-based Frequency Estimation Protocol for Data Streams
Ying Li
Xiaodong Lee
Botao Peng
Themis Palpanas
Jingán Xue
50
5
0
21 Jun 2023
You Don't Need Robust Machine Learning to Manage Adversarial Attack Risks
Edward Raff
M. Benaroch
Andrew L. Farris
AAML
61
2
0
16 Jun 2023
Protecting User Privacy in Remote Conversational Systems: A Privacy-Preserving framework based on text sanitization
Zhigang Kan
Linbo Qiao
Hao Yu
Liwen Peng
Yifu Gao
Dongsheng Li
87
21
0
14 Jun 2023
Continual Release of Differentially Private Synthetic Data from Longitudinal Data Collections
Mark Bun
Marco Gaboardi
Marcel Neunhoeffer
Wanrong Zhang
SyDa
58
7
0
13 Jun 2023
Differentially private sliced inverse regression in the federated paradigm
Shuai He
Jiawei Zhang
Xin Chen
FedML
69
1
0
10 Jun 2023
Differential Privacy with Random Projections and Sign Random Projections
P. Li
Xiaoyun Li
75
8
0
22 May 2023
Analyzing the Shuffle Model through the Lens of Quantitative Information Flow
Mireya Jurado
Ramon G. Gonze
Mário S. Alvim
C. Palamidessi
61
1
0
22 May 2023
Minimax rate for multivariate data under componentwise local differential privacy constraints
Chiara Amorino
A. Gloter
128
2
0
17 May 2023
Differentially-private Continual Releases against Dynamic Databases
Ming-Chuan Pan
63
0
0
05 May 2023
Triangle Counting with Local Edge Differential Privacy
T. Eden
Quanquan C. Liu
Sofya Raskhodnikova
Adam D. Smith
142
13
0
03 May 2023
Pool Inference Attacks on Local Differential Privacy: Quantifying the Privacy Guarantees of Apple's Count Mean Sketch in Practice
Andrea Gadotti
Frederick Sell
Reethika Ramesh
Jinyuan Jia
55
18
0
14 Apr 2023
30 Years of Synthetic Data
Joerg Drechsler
Anna Haensch
57
16
0
04 Apr 2023
A Communication-efficient Local Differentially Private Algorithm in Federated Optimization
Syed Eqbal Alam
Dhirendra Shukla
Shrisha Rao
FedML
55
2
0
04 Apr 2023
Foundation Models and Fair Use
Peter Henderson
Xuechen Li
Dan Jurafsky
Tatsunori Hashimoto
Mark A. Lemley
Percy Liang
82
123
0
28 Mar 2023
An Improved Christofides Mechanism for Local Differential Privacy Framework
She Sun
Li Zhou
Xiaoran Yan
34
0
0
01 Mar 2023
What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy
Priyanka Nanayakkara
Mary Anne Smart
Rachel Cummings
Gabriel Kaptchuk
Elissa M. Redmiles
99
34
0
01 Mar 2023
Lumos: Heterogeneity-aware Federated Graph Learning over Decentralized Devices
Qiying Pan
Yifei Zhu
Lingyang Chu
FedML
75
10
0
01 Mar 2023
Multi-Message Shuffled Privacy in Federated Learning
Antonious M. Girgis
Suhas Diggavi
FedML
95
9
0
22 Feb 2023
Differential Aggregation against General Colluding Attackers
Rong Du
Qingqing Ye
Yue Fu
Haibo Hu
Jin Li
Chengfang Fang
Jie Shi
AAML
66
11
0
18 Feb 2023
Private Statistical Estimation of Many Quantiles
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
60
6
0
14 Feb 2023
LDPTrace: Locally Differentially Private Trajectory Synthesis
Yuntao Du
Yujia Hu
Zhikun Zhang
Ziquan Fang
Lu Chen
Baihua Zheng
Yunjun Gao
90
52
0
13 Feb 2023
On the Efficacy of Differentially Private Few-shot Image Classification
Marlon Tobaben
Aliaksandra Shysheya
J. Bronskill
Andrew Paverd
Shruti Tople
Santiago Zanella Béguelin
Richard Turner
Antti Honkela
84
12
0
02 Feb 2023
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
80
6
0
19 Jan 2023
Towards Separating Computational and Statistical Differential Privacy
Badih Ghazi
Rahul Ilango
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
54
5
0
31 Dec 2022
On Differentially Private Counting on Trees
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Kewen Wu
53
8
0
22 Dec 2022
Previous
1
2
3
4
5
6
7
Next