Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1712.01572
Cited By
v1
v2
v3 (latest)
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
5 December 2017
Stefan Klus
Ingmar Schuster
Krikamol Muandet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces"
50 / 58 papers shown
Title
Sequence Modeling with Spectral Mean Flows
Jinwoo Kim
Max Beier
Nicolas Hoischen
Nayun Kim
Seunghoon Hong
BDL
138
0
0
17 Oct 2025
Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
Septimus Boshoff
Sebastian Peitz
Stefan Klus
93
0
0
26 Sep 2025
How deep is your network? Deep vs. shallow learning of transfer operators
Mohammad Tabish
Benedict Leimkuhler
Stefan Klus
77
0
0
24 Sep 2025
Data-driven approximation of transfer operators for mean-field stochastic differential equations
Eirini Ioannou
Stefan Klus
Gonçalo dos Reis
49
0
0
11 Sep 2025
Koopman-Equivariant Gaussian Processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Nicolas Hoischen
Max Beier
Armin Lederer
A. Capone
Roland Toth
Sandra Hirche
AI4TS
250
5
0
10 Feb 2025
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
P. Novelli
Massimiliano Pontil
238
2
0
18 Oct 2024
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Yuka Hashimoto
Tomoharu Iwata
337
0
0
03 Oct 2024
Inferring Kernel
ε
ε
ε
-Machines: Discovering Structure in Complex Systems
Chaos (Chaos), 2024
Alexandra M. Jurgens
Nicolas Brodu
CML
231
0
0
01 Oct 2024
Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
Nicolas Hoischen
Nicolas Hoischen
Roland Toth
Sandra Hirche
Boris Houska
281
2
0
23 Jul 2024
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
Massimiliano Pontil
DiffM
161
7
0
21 May 2024
Dynamical systems and complex networks: A Koopman operator perspective
Stefan Klus
Natavsa Djurdjevac Conrad
80
10
0
14 May 2024
Nonparametric Control Koopman Operators
Nicolas Hoischen
Bas Driessen
Lucian-Cristian Iacob
Stefan Sosnowski
Roland Toth
Sandra Hirche
349
6
0
12 May 2024
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Edoardo Caldarelli
Antoine Chatalic
Adrià Colomé
C. Molinari
C. Ocampo‐Martinez
Carme Torras
Lorenzo Rosasco
376
3
0
05 Mar 2024
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Prune Inzerilli
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
184
8
0
20 Dec 2023
Operator-Based Detecting, Learning, and Stabilizing Unstable Periodic Orbits of Chaotic Attractors
American Control Conference (ACC), 2023
A. Tavasoli
Heman Shakeri
120
0
0
07 Sep 2023
Learning invariant representations of time-homogeneous stochastic dynamical systems
International Conference on Learning Representations (ICLR), 2023
Vladimir Kostic
P. Novelli
Riccardo Grazzi
Karim Lounici
Massimiliano Pontil
212
12
0
19 Jul 2023
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
Neural Information Processing Systems (NeurIPS), 2023
Giacomo Meanti
Antoine Chatalic
Vladimir Kostic
P. Novelli
Massimiliano Pontil
Lorenzo Rosasco
250
14
0
07 Jun 2023
Koopman Kernel Regression
Neural Information Processing Systems (NeurIPS), 2023
Nicolas Hoischen
Maximilian Beier
Armin Lederer
Roland Toth
Eyke Hüllermeier
Sandra Hirche
AI4TS
181
25
0
25 May 2023
Discovering Causal Relations and Equations from Data
Physics reports (Phys. Rep.), 2023
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
202
105
0
21 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
182
0
0
27 Apr 2023
Koopman-based generalization bound: New aspect for full-rank weights
International Conference on Learning Representations (ICLR), 2023
Yuka Hashimoto
Sho Sonoda
Isao Ishikawa
Atsushi Nitanda
Taiji Suzuki
242
4
0
12 Feb 2023
Online Estimation of the Koopman Operator Using Fourier Features
Conference on Learning for Dynamics & Control (L4DC), 2022
Tahiya Salam
Alice K. Li
M. Hsieh
197
7
0
03 Dec 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
394
2
0
29 Jul 2022
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Neural Information Processing Systems (NeurIPS), 2022
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
306
78
0
27 May 2022
Koopman-based spectral clustering of directed and time-evolving graphs
Journal of nonlinear science (J. Nonlinear Sci.), 2022
Stefan Klus
Nataša Djurdjevac Conrad
111
13
0
06 Apr 2022
Koopman Methods for Estimation of Animal Motions over Unknown Submanifolds
Nathan Powell
Bowei Liu
Jia Guo
Sai Tej Parachuri
A. Kurdila
231
0
0
10 Mar 2022
KPF-AE-LSTM: A Deep Probabilistic Model for Net-Load Forecasting in High Solar Scenarios
Deepthi Sen
Indrasis Chakraborty
Soumya Kundu
A. Reiman
I. Beil
Andy Eiden
116
2
0
05 Mar 2022
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
99
3
0
01 Dec 2021
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
315
95
0
29 Nov 2021
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
206
130
0
28 Oct 2021
Learning and Leveraging Features in Flow-Like Environments to Improve Situational Awareness
Tahiya Salam
Victoria Edwards
M. A. Hsieh
257
7
0
13 Sep 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
370
64
0
27 Aug 2021
Sobolev Norm Learning Rates for Conditional Mean Embeddings
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Prem M. Talwai
A. Shameli
D. Simchi-Levi
259
12
0
16 May 2021
Learning Good State and Action Representations via Tensor Decomposition
Journal of machine learning research (JMLR), 2021
Chengzhuo Ni
Yaqi Duan
M. Dahleh
Anru R. Zhang
Mengdi Wang
237
7
0
03 May 2021
Estimating Koopman operators for nonlinear dynamical systems: a nonparametric approach
IFAC-PapersOnLine (IFAC-PapersOnLine), 2021
Francesco Zanini
A. Chiuso
86
6
0
25 Mar 2021
Modern Koopman Theory for Dynamical Systems
SIAM Review (SIAM Rev.), 2021
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
231
535
0
24 Feb 2021
Reproducing kernel Hilbert C*-module and kernel mean embeddings
Journal of machine learning research (JMLR), 2021
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Takeshi Katsura
Yoshinobu Kawahara
117
13
0
27 Jan 2021
Nonparametric approximation of conditional expectation operators
Mattes Mollenhauer
P. Koltai
264
21
0
23 Dec 2020
Feature space approximation for kernel-based supervised learning
Knowledge-Based Systems (KBS), 2020
Patrick Gelß
Stefan Klus
Ingmar Schuster
Christof Schütte
98
5
0
25 Nov 2020
Discovering Causal Structure with Reproducing-Kernel Hilbert Space
ε
ε
ε
-Machines
Chaos (CHAOS), 2020
N. Brodu
James P. Crutchfield
CML
321
16
0
23 Nov 2020
The linear conditional expectation in Hilbert space
I. Klebanov
Björn Sprungk
T. Sullivan
166
14
0
27 Aug 2020
GraphKKE: Graph Kernel Koopman Embedding for Human Microbiome Analysis
Applied Network Science (Appl Netw Sci), 2020
K. Melnyk
Stefan Klus
G. Montavon
Tim Conrad
120
11
0
12 Aug 2020
Kernel Mean Embeddings of Von Neumann-Algebra-Valued Measures
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Yoshinobu Kawahara
87
2
0
29 Jul 2020
Kernel-based approximation of the Koopman generator and Schrödinger operator
Entropy (Entropy), 2020
Stefan Klus
Feliks Nuske
B. Hamzi
140
71
0
27 May 2020
A Kernel Two-sample Test for Dynamical Systems
Friedrich Solowjow
Dominik Baumann
Christian Fiedler
Andreas J. Jocham
Thomas Seel
Sebastian Trimpe
193
11
0
23 Apr 2020
Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence
Journal of machine learning research (JMLR), 2020
Mattes Mollenhauer
Stefan Klus
Christof Schütte
P. Koltai
183
11
0
02 Apr 2020
Learning Theory for Estimation of Animal Motion Submanifolds
IEEE Conference on Decision and Control (CDC), 2020
Nathan Powell
A. Kurdila
66
4
0
30 Mar 2020
Analysis via Orthonormal Systems in Reproducing Kernel Hilbert
C
∗
C^*
C
∗
-Modules and Applications
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Takeshi Katsura
Yoshinobu Kawahara
99
2
0
02 Mar 2020
Geometric Considerations of a Good Dictionary for Koopman Analysis of Dynamical Systems: Cardinality, 'Primary Eigenfunction,' and Efficient Representation
Communications in nonlinear science & numerical simulation (CNSNS), 2019
Erik Bollt
73
25
0
18 Dec 2019
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
226
262
0
23 Sep 2019
1
2
Next