Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.05654
Cited By
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
15 December 2017
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice"
28 / 28 papers shown
Title
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Huaqing Zhang
Lesi Chen
Jing Xu
J.N. Zhang
78
0
0
28 Jan 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
41
0
0
28 Jan 2025
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
44
1
0
09 Nov 2023
Statistical and Computational Guarantees for Influence Diagnostics
Jillian R. Fisher
Lang Liu
Krishna Pillutla
Y. Choi
Zaïd Harchaoui
TDI
29
0
0
08 Dec 2022
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
29
9
0
26 Nov 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
65
11
0
17 Jun 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
39
17
0
15 Jun 2022
Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity
D. Kovalev
Aleksandr Beznosikov
Ekaterina Borodich
Alexander Gasnikov
G. Scutari
38
12
0
30 May 2022
On Acceleration of Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ekaterina Trimbach
Edward Duc Hien Nguyen
César A. Uribe
34
1
0
16 Apr 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Anticorrelated Noise Injection for Improved Generalization
Antonio Orvieto
Hans Kersting
F. Proske
Francis R. Bach
Aurelien Lucchi
78
44
0
06 Feb 2022
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
28
8
0
11 Nov 2021
Acceleration in Distributed Optimization under Similarity
Helena Lofstrom
G. Scutari
Tianyue Cao
Alexander Gasnikov
32
26
0
24 Oct 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
38
61
0
29 Mar 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
62
16
0
07 Jan 2021
Differentiable Programming à la Moreau
Vincent Roulet
Zaïd Harchaoui
23
5
0
31 Dec 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip Torr
M. P. Kumar
19
50
0
24 Feb 2020
Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more
Julien Mairal
24
22
0
17 Dec 2019
Solving Empirical Risk Minimization in the Current Matrix Multiplication Time
Y. Lee
Zhao Song
Qiuyi Zhang
24
115
0
11 May 2019
Deep Neural Networks for Rotation-Invariance Approximation and Learning
C. Chui
Shao-Bo Lin
Ding-Xuan Zhou
32
34
0
03 Apr 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
34
44
0
25 Jan 2019
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
27
361
0
05 Jun 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
49
52
0
12 Feb 2018
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
33
13
0
04 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1