ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05654
  4. Cited By
Catalyst Acceleration for First-order Convex Optimization: from Theory
  to Practice

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice

15 December 2017
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
ArXivPDFHTML

Papers citing "Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice"

28 / 28 papers shown
Title
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Huaqing Zhang
Lesi Chen
Jing Xu
J.N. Zhang
78
0
0
28 Jan 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
41
0
0
28 Jan 2025
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
44
1
0
09 Nov 2023
Statistical and Computational Guarantees for Influence Diagnostics
Statistical and Computational Guarantees for Influence Diagnostics
Jillian R. Fisher
Lang Liu
Krishna Pillutla
Y. Choi
Zaïd Harchaoui
TDI
29
0
0
08 Dec 2022
Accelerated Riemannian Optimization: Handling Constraints with a Prox to
  Bound Geometric Penalties
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
29
9
0
26 Nov 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
65
11
0
17 Jun 2022
On the fast convergence of minibatch heavy ball momentum
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
39
17
0
15 Jun 2022
Optimal Gradient Sliding and its Application to Distributed Optimization
  Under Similarity
Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity
D. Kovalev
Aleksandr Beznosikov
Ekaterina Borodich
Alexander Gasnikov
G. Scutari
38
12
0
30 May 2022
On Acceleration of Gradient-Based Empirical Risk Minimization using
  Local Polynomial Regression
On Acceleration of Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ekaterina Trimbach
Edward Duc Hien Nguyen
César A. Uribe
34
1
0
16 Apr 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Anticorrelated Noise Injection for Improved Generalization
Anticorrelated Noise Injection for Improved Generalization
Antonio Orvieto
Hans Kersting
F. Proske
Francis R. Bach
Aurelien Lucchi
78
44
0
06 Feb 2022
Convergence and Stability of the Stochastic Proximal Point Algorithm
  with Momentum
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
28
8
0
11 Nov 2021
Acceleration in Distributed Optimization under Similarity
Acceleration in Distributed Optimization under Similarity
Helena Lofstrom
G. Scutari
Tianyue Cao
Alexander Gasnikov
32
26
0
24 Oct 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
38
61
0
29 Mar 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based
  Stochastic Optimization
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
62
16
0
07 Jan 2021
Differentiable Programming à la Moreau
Differentiable Programming à la Moreau
Vincent Roulet
Zaïd Harchaoui
23
5
0
31 Dec 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Lagrangian Decomposition for Neural Network Verification
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip Torr
M. P. Kumar
19
50
0
24 Feb 2020
Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for
  Python, C++, and soon more
Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more
Julien Mairal
24
22
0
17 Dec 2019
Solving Empirical Risk Minimization in the Current Matrix Multiplication
  Time
Solving Empirical Risk Minimization in the Current Matrix Multiplication Time
Y. Lee
Zhao Song
Qiuyi Zhang
24
115
0
11 May 2019
Deep Neural Networks for Rotation-Invariance Approximation and Learning
Deep Neural Networks for Rotation-Invariance Approximation and Learning
C. Chui
Shao-Bo Lin
Ding-Xuan Zhou
32
34
0
03 Apr 2019
Estimate Sequences for Stochastic Composite Optimization: Variance
  Reduction, Acceleration, and Robustness to Noise
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
34
44
0
25 Jan 2019
Understanding the Acceleration Phenomenon via High-Resolution
  Differential Equations
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
27
361
0
05 Jun 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
49
52
0
12 Feb 2018
An Inexact Variable Metric Proximal Point Algorithm for Generic
  Quasi-Newton Acceleration
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
33
13
0
04 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1