ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.09707
  4. Cited By
Deep learning for universal linear embeddings of nonlinear dynamics
v1v2 (latest)

Deep learning for universal linear embeddings of nonlinear dynamics

27 December 2017
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
ArXiv (abs)PDFHTML

Papers citing "Deep learning for universal linear embeddings of nonlinear dynamics"

50 / 411 papers shown
Title
Learned Coarse Models for Efficient Turbulence Simulation
Learned Coarse Models for Efficient Turbulence Simulation
Kimberly L. Stachenfeld
D. Fielding
Dmitrii Kochkov
M. Cranmer
Tobias Pfaff
Jonathan Godwin
Can Cui
S. Ho
Peter W. Battaglia
Alvaro Sanchez-Gonzalez
AI4CE
121
84
0
31 Dec 2021
Deep Learning for Stability Analysis of a Freely Vibrating Sphere at
  Moderate Reynolds Number
Deep Learning for Stability Analysis of a Freely Vibrating Sphere at Moderate Reynolds Number
A. Chizfahm
R. Jaiman
AI4CE
29
0
0
18 Dec 2021
Manifold embedding data-driven mechanics
Manifold embedding data-driven mechanics
B. Bahmani
WaiChing Sun
PINNAI4CE
76
9
0
18 Dec 2021
Data-driven modelling of nonlinear dynamics by barycentric coordinates
  and memory
Data-driven modelling of nonlinear dynamics by barycentric coordinates and memory
Niklas Wulkow
P. Koltai
V. Sunkara
Christof Schütte
75
3
0
13 Dec 2021
Output-weighted and relative entropy loss functions for deep learning
  precursors of extreme events
Output-weighted and relative entropy loss functions for deep learning precursors of extreme events
S. Rudy
T. Sapsis
73
16
0
01 Dec 2021
Rigorous data-driven computation of spectral properties of Koopman
  operators for dynamical systems
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
95
72
0
29 Nov 2021
Learning Physical Concepts in Cyber-Physical Systems: A Case Study
Learning Physical Concepts in Cyber-Physical Systems: A Case Study
Henrik S. Steude
Alexander Windmann
Oliver Niggemann
AI4CE
72
1
0
28 Nov 2021
Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
  Dynamics using Deep Learning
Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear Dynamics using Deep Learning
P. Goyal
P. Benner
AI4CE
57
5
0
25 Nov 2021
Physics-enhanced Neural Networks in the Small Data Regime
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CEPINN
45
5
0
19 Nov 2021
Neural optimal feedback control with local learning rules
Neural optimal feedback control with local learning rules
Johannes Friedrich
Siavash Golkar
Shiva Farashahi
A. Genkin
Anirvan M. Sengupta
D. Chklovskii
39
13
0
12 Nov 2021
Solving PDE-constrained Control Problems Using Operator Learning
Solving PDE-constrained Control Problems Using Operator Learning
Rakhoon Hwang
Jae Yong Lee
J. Shin
H. Hwang
AI4CE
170
48
0
09 Nov 2021
Statistical properties of large data sets with linear latent features
Statistical properties of large data sets with linear latent features
P. Fleig
I. Nemenman
65
5
0
08 Nov 2021
Generative Adversarial Network for Probabilistic Forecast of Random
  Dynamical System
Generative Adversarial Network for Probabilistic Forecast of Random Dynamical System
K. Yeo
Zan Li
Wesley M. Gifford
SyDaGANAI4TSAI4CE
108
4
0
04 Nov 2021
Symmetry-Aware Autoencoders: s-PCA and s-nlPCA
Symmetry-Aware Autoencoders: s-PCA and s-nlPCA
Simon Kneer
T. Sayadi
D. Sipp
Peter J. Schmid
Georgios Rigas
50
10
0
04 Nov 2021
Deeptime: a Python library for machine learning dynamical models from
  time series data
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
101
107
0
28 Oct 2021
A Neural Network Ensemble Approach to System Identification
A Neural Network Ensemble Approach to System Identification
Elisa Negrini
G. Citti
L. Capogna
51
2
0
15 Oct 2021
Learning Stable Koopman Embeddings
Learning Stable Koopman Embeddings
Fletcher Fan
Yeman Fan
D. Rye
Guodong Shi
I. Manchester
92
34
0
13 Oct 2021
Chaos as an interpretable benchmark for forecasting and data-driven
  modelling
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
75
82
0
11 Oct 2021
Deep Identification of Nonlinear Systems in Koopman Form
Deep Identification of Nonlinear Systems in Koopman Form
Lucian-Cristian Iacob
G. Beintema
Maarten Schoukens
R. Tóth
52
16
0
06 Oct 2021
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
188
385
0
05 Oct 2021
Applying Machine Learning to Study Fluid Mechanics
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINNAI4CE
63
100
0
05 Oct 2021
Data-driven Nonlinear Model Reduction to Spectral Submanifolds in
  Mechanical Systems
Data-driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
Mattia Cenedese
Joar Axås
Haocheng Yang
M. Eriten
George Haller
154
41
0
05 Oct 2021
Exploration of Artificial Intelligence-oriented Power System Dynamic
  Simulators
Exploration of Artificial Intelligence-oriented Power System Dynamic Simulators
Tannan Xiao
Ying-Cong Chen
Jianquan Wang
Shaowei Huang
Weilin Tong
Tirui He
51
15
0
03 Oct 2021
Self-Supervised Decomposition, Disentanglement and Prediction of Video
  Sequences while Interpreting Dynamics: A Koopman Perspective
Self-Supervised Decomposition, Disentanglement and Prediction of Video Sequences while Interpreting Dynamics: A Koopman Perspective
Armand Comas Massague
S. Ghimire
Haolin Li
Octavia Camps
Mario Sznaier
112
2
0
01 Oct 2021
Extended dynamic mode decomposition with dictionary learning using
  neural ordinary differential equations
Extended dynamic mode decomposition with dictionary learning using neural ordinary differential equations
H. Terao
Sho Shirasaka
Hideyuki Suzuki
58
6
0
01 Oct 2021
Learning Transport Processes with Machine Intelligence
Learning Transport Processes with Machine Intelligence
F. Miniati
G. Gregori
AI4CE
60
4
0
27 Sep 2021
Model reduction for the material point method via an implicit neural
  representation of the deformation map
Model reduction for the material point method via an implicit neural representation of the deformation map
Julius Berner
Maurizio M. Chiaramonte
E. Grinspun
Kevin Carlberg
104
15
0
25 Sep 2021
Learning Dynamics from Noisy Measurements using Deep Learning with a
  Runge-Kutta Constraint
Learning Dynamics from Noisy Measurements using Deep Learning with a Runge-Kutta Constraint
P. Goyal
P. Benner
81
9
0
23 Sep 2021
Analysis of chaotic dynamical systems with autoencoders
Analysis of chaotic dynamical systems with autoencoders
N. Almazova
G. D. Barmparis
G. P. Tsironis
23
7
0
22 Sep 2021
Recurrent Neural Networks for Partially Observed Dynamical Systems
Recurrent Neural Networks for Partially Observed Dynamical Systems
Uttam Bhat
S. Munch
PINNAI4CE
65
9
0
21 Sep 2021
Stochastic Adversarial Koopman Model for Dynamical Systems
Stochastic Adversarial Koopman Model for Dynamical Systems
K. Balakrishnan
Devesh Upadhyay
45
8
0
10 Sep 2021
Supervised DKRC with Images for Offline System Identification
Supervised DKRC with Images for Offline System Identification
Alexander Krolicki
P. Lavertu
52
1
0
06 Sep 2021
Towards high-accuracy deep learning inference of compressible turbulent
  flows over aerofoils
Towards high-accuracy deep learning inference of compressible turbulent flows over aerofoils
Li-Wei Chen
Nils Thuerey
AI4CE
67
9
0
05 Sep 2021
Towards extraction of orthogonal and parsimonious non-linear modes from
  turbulent flows
Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows
Hamidreza Eivazi
S. L. C. Martínez
S. Hoyas
Ricardo Vinuesa
93
96
0
03 Sep 2021
Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics
Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics
Xiaotian Jiang
Danshi Wang
Qirui Fan
Min Zhang
Chao Lu
A. Lau
AI4CEPINN
39
85
0
01 Sep 2021
Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural
  Ordinary Differential Equations
Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural Ordinary Differential Equations
Alec J. Linot
M. Graham
52
51
0
31 Aug 2021
Data-driven discovery of intrinsic dynamics
Data-driven discovery of intrinsic dynamics
D. Floryan
M. Graham
AI4CE
183
78
0
12 Aug 2021
Deep Learning Enhanced Dynamic Mode Decomposition
Deep Learning Enhanced Dynamic Mode Decomposition
D. J. Alford-Lago
C. Curtis
Alexander T. Ihler
Opal Issan
75
36
0
10 Aug 2021
Generalizing Dynamic Mode Decomposition: Balancing Accuracy and
  Expressiveness in Koopman Approximations
Generalizing Dynamic Mode Decomposition: Balancing Accuracy and Expressiveness in Koopman Approximations
Masih Haseli
Jorge Cortes
61
15
0
08 Aug 2021
Bayesian Deep Learning for Partial Differential Equation Parameter
  Discovery with Sparse and Noisy Data
Bayesian Deep Learning for Partial Differential Equation Parameter Discovery with Sparse and Noisy Data
Christophe Bonneville
Christopher Earls
96
14
0
05 Aug 2021
Reconstructing a dynamical system and forecasting time series by
  self-consistent deep learning
Reconstructing a dynamical system and forecasting time series by self-consistent deep learning
Zhe Wang
C. Guet
AI4TS
26
4
0
04 Aug 2021
A purely data-driven framework for prediction, optimization, and control
  of networked processes: application to networked SIS epidemic model
A purely data-driven framework for prediction, optimization, and control of networked processes: application to networked SIS epidemic model
A. Tavasoli
T. Henry
Heman Shakeri
81
4
0
01 Aug 2021
Discovering Sparse Interpretable Dynamics from Partial Observations
Discovering Sparse Interpretable Dynamics from Partial Observations
Peter Y. Lu
Joan Ariño Bernad
Marin Soljacic
AI4CE
83
25
0
22 Jul 2021
Data-driven reduced order modeling of environmental hydrodynamics using
  deep autoencoders and neural ODEs
Data-driven reduced order modeling of environmental hydrodynamics using deep autoencoders and neural ODEs
S. Dutta
Peter Rivera-Casillas
Orie M. Cecil
Matthew W. Farthing
E. Perracchione
M. Putti
AI4CE
56
7
0
06 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CEPINN
117
69
0
02 Jul 2021
Active Learning in Robotics: A Review of Control Principles
Active Learning in Robotics: A Review of Control Principles
Annalisa T. Taylor
Thomas A. Berrueta
Todd Murphey
98
77
0
25 Jun 2021
Physics perception in sloshing scenes with guaranteed thermodynamic
  consistency
Physics perception in sloshing scenes with guaranteed thermodynamic consistency
B. Moya
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
76
14
0
24 Jun 2021
Deep Probabilistic Koopman: Long-term time-series forecasting under
  periodic uncertainties
Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties
Alex Troy Mallen
Henning Lange
J. Nathan Kutz
AI4TS
63
8
0
10 Jun 2021
Encoding physics to learn reaction-diffusion processes
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINNAI4CEDiffM
107
97
0
09 Jun 2021
Calibrating multi-dimensional complex ODE from noisy data via deep
  neural networks
Calibrating multi-dimensional complex ODE from noisy data via deep neural networks
Kexuan Li
Fangfang Wang
Ruiqi Liu
Fan Yang
Zuofeng Shang
61
7
0
07 Jun 2021
Previous
123456789
Next