Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.09707
Cited By
v1
v2 (latest)
Deep learning for universal linear embeddings of nonlinear dynamics
27 December 2017
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep learning for universal linear embeddings of nonlinear dynamics"
50 / 411 papers shown
Title
Tensorized Transformer for Dynamical Systems Modeling
Anna Shalova
Ivan Oseledets
AI4CE
69
8
0
05 Jun 2020
Optimizing Neural Networks via Koopman Operator Theory
Akshunna S. Dogra
William T. Redman
78
51
0
03 Jun 2020
Objective-Sensitive Principal Component Analysis for High-Dimensional Inverse Problems
M. Elizarev
A. Mukhin
A. Khlyupin
23
3
0
02 Jun 2020
Data-Driven Continuum Dynamics via Transport-Teleport Duality
Jong-Hoon Ahn
AI4CE
31
0
0
27 May 2020
Learning Stable Models for Prediction and Control
Giorgos Mamakoukas
Ian Abraham
Todd Murphey
97
39
0
08 May 2020
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINN
AI4CE
117
400
0
05 May 2020
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
Hamidreza Eivazi
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
AI4CE
60
7
0
01 May 2020
Bayesian differential programming for robust systems identification under uncertainty
Yibo Yang
Mohamed Aziz Bhouri
P. Perdikaris
OOD
123
32
0
15 Apr 2020
Multiresolution Convolutional Autoencoders
Yuying Liu
Colin Ponce
Steven L. Brunton
J. Nathan Kutz
SyDa
52
31
0
10 Apr 2020
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction
Henning Lange
Steven L. Brunton
N. Kutz
AI4TS
89
80
0
01 Apr 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
158
415
0
10 Mar 2020
Machine learning based non-Newtonian fluid model with molecular fidelity
H. Lei
Lei Wu
E. Weinan
38
18
0
07 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
206
152
0
04 Mar 2020
Variational inference formulation for a model-free simulation of a dynamical system with unknown parameters by a recurrent neural network
K. Yeo
D. E. C. Grullon
Fan-Keng Sun
Duane S. Boning
Jayant Kalagnanam
BDL
57
3
0
02 Mar 2020
Analysis via Orthonormal Systems in Reproducing Kernel Hilbert
C
∗
C^*
C
∗
-Modules and Applications
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Takeshi Katsura
Yoshinobu Kawahara
19
2
0
02 Mar 2020
Dimensionality reduction to maximize prediction generalization capability
Takuya Isomura
Taro Toyoizumi
47
17
0
01 Mar 2020
Sparsity-promoting algorithms for the discovery of informative Koopman invariant subspaces
Shaowu Pan
Nicholas Arnold-Medabalimi
Karthik Duraisamy
78
48
0
25 Feb 2020
Computer-inspired Quantum Experiments
Mario Krenn
Manuel Erhard
A. Zeilinger
72
75
0
23 Feb 2020
Generalized Kernel-Based Dynamic Mode Decomposition
P. Héas
Cédric Herzet
B. Combès
20
6
0
11 Feb 2020
Hamiltonian neural networks for solving equations of motion
M. Mattheakis
David Sondak
Akshunna S. Dogra
P. Protopapas
108
59
0
29 Jan 2020
Interpretable Conservation Law Estimation by Deriving the Symmetries of Dynamics from Trained Deep Neural Networks
Yoh-ichi Mototake
PINN
AI4CE
62
14
0
31 Dec 2019
Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework
Wanxin Jin
Zhaoran Wang
Zhuoran Yang
Shaoshuai Mou
96
80
0
30 Dec 2019
Tensor Basis Gaussian Process Models of Hyperelastic Materials
A. Frankel
Reese E. Jones
L. Swiler
81
43
0
23 Dec 2019
Interpretable Embeddings From Molecular Simulations Using Gaussian Mixture Variational Autoencoders
Yasemin Bozkurt Varolgunes
T. Bereau
J. F. Rudzinski
DRL
58
44
0
22 Dec 2019
Deep learning to discover and predict dynamics on an inertial manifold
Alec J. Linot
M. Graham
AI4CE
78
75
0
20 Dec 2019
Parameter-Conditioned Sequential Generative Modeling of Fluid Flows
Jeremy Morton
F. Witherden
Mykel J. Kochenderfer
GAN
MedIm
AI4CE
61
10
0
14 Dec 2019
Density Propagation with Characteristics-based Deep Learning
Tenavi Nakamura-Zimmerer
D. Venturi
Q. Gong
W. Kang
AI4CE
49
1
0
21 Nov 2019
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs
Craig Gin
Bethany Lusch
Steven L. Brunton
J. Nathan Kutz
83
41
0
07 Nov 2019
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
114
121
0
18 Oct 2019
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
94
400
0
09 Oct 2019
Neural Canonical Transformation with Symplectic Flows
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
DRL
119
28
0
30 Sep 2019
Towards Scalable Koopman Operator Learning: Convergence Rates and A Distributed Learning Algorithm
Zhiyuan Liu
Guohui Ding
Lijun Chen
Enoch Yeung
25
3
0
30 Sep 2019
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
118
230
0
23 Sep 2019
Tensor-based computation of metastable and coherent sets
Feliks Nuske
Patrick Gelß
Stefan Klus
C. Clementi
32
13
0
12 Aug 2019
Predicting Critical Transitions in Multiscale Dynamical Systems Using Reservoir Computing
Soon Hoe Lim
L. T. Giorgini
W. Moon
J. Wettlaufer
64
4
0
10 Aug 2019
A unified sparse optimization framework to learn parsimonious physics-informed models from data
Kathleen P. Champion
P. Zheng
Aleksandr Aravkin
Steven L. Brunton
J. Nathan Kutz
AI4CE
76
119
0
25 Jun 2019
Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
Ian Abraham
Todd Murphey
71
166
0
12 Jun 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
140
138
0
09 Jun 2019
A Novel Modeling Approach for All-Dielectric Metasurfaces Using Deep Neural Networks
S. An
Clayton Fowler
B. Zheng
M. Shalaginov
H. Tang
...
C. Rivero‐Baleine
K. Richardson
T. Gu
Juejun Hu
Hualiang Zhang
42
17
0
08 Jun 2019
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CE
PINN
103
2,146
0
27 May 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
75
141
0
26 May 2019
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
120
677
0
21 May 2019
Time-varying Autoregression with Low Rank Tensors
K. Harris
Aleksandr Aravkin
Rajesh P. N. Rao
Bingni W. Brunton
AI4TS
80
20
0
21 May 2019
Exploring helical dynamos with machine learning
F. Nauman
J. Nättilä
AI4CE
13
4
0
20 May 2019
Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical Systems
Jin-Long Wu
K. Kashinath
A. Albert
D. Chirila
P. Prabhat
Heng Xiao
AI4CE
66
134
0
13 May 2019
Physically-interpretable classification of biological network dynamics for complex collective motions
Keisuke Fujii
Naoya Takeishi
Motokazu Hojo
Yuki Inaba
Yoshinobu Kawahara
110
11
0
13 May 2019
Short note on the behavior of recurrent neural network for noisy dynamical system
K. Yeo
42
13
0
05 Apr 2019
Time Series Source Separation using Dynamic Mode Decomposition
Arvind Prasadan
R. Nadakuditi
AI4TS
88
6
0
04 Mar 2019
Video Extrapolation with an Invertible Linear Embedding
Robert Pottorff
Jared Nielsen
David Wingate
53
5
0
01 Mar 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
85
47
0
26 Feb 2019
Previous
1
2
3
4
5
6
7
8
9
Next