ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.10321
  4. Cited By
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer
  Electromagnetic Calorimeters with Generative Adversarial Networks

CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks

21 December 2017
Michela Paganini
Luke de Oliveira
Benjamin Nachman
    AI4CEGAN
ArXiv (abs)PDFHTML

Papers citing "CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks"

50 / 104 papers shown
Geometric Priors for Scientific Generative Models in Inertial
  Confinement Fusion
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
Ankita Shukla
Rushil Anirudh
E. Kur
Jayaraman J. Thiagarajan
P. Bremer
B. Spears
Tammy Ma
Pavan Turaga
GAN
62
1
0
24 Nov 2021
Applications and Techniques for Fast Machine Learning in Science
Applications and Techniques for Fast Machine Learning in ScienceFrontiers in Big Data (Front. Big Data), 2021
A. Deiana
Nhan Tran
Joshua C. Agar
Michaela Blott
G. D. Guglielmo
...
Ashish Sharma
S. Summers
Pietro Vischia
J. Vlimant
Olivia Weng
226
81
0
25 Oct 2021
Generative Networks for Precision Enthusiasts
Generative Networks for Precision EnthusiastsSciPost Physics (SciPost Phys.), 2021
A. Butter
Theo Heimel
Sander Hummerich
Tobias Krebs
Tilman Plehn
Armand Rousselot
Sophia Vent
AI4CE
305
65
0
22 Oct 2021
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
  Showers with Normalizing Flows
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
185
71
0
21 Oct 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for
  Parametric PDEs
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
Soumik Sarkar
Chinmay Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
249
24
0
04 Oct 2021
Particle Cloud Generation with Message Passing Generative Adversarial
  Networks
Particle Cloud Generation with Message Passing Generative Adversarial NetworksNeural Information Processing Systems (NeurIPS), 2021
Raghav Kansal
Javier Mauricio Duarte
Haoran Su
B. Orzari
T. Tomei
M. Pierini
M. Touranakou
J. Vlimant
Dimitrios Gunopulos
229
85
0
22 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
370
91
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDLGANDRLDiffM
341
28
0
01 Jun 2021
The use of Generative Adversarial Networks to characterise new physics
  in multi-lepton final states at the LHC
The use of Generative Adversarial Networks to characterise new physics in multi-lepton final states at the LHC
Thabang Lebese
X. Ruan
GAN
181
9
0
31 May 2021
Physics Validation of Novel Convolutional 2D Architectures for Speeding
  Up High Energy Physics Simulations
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics SimulationsEPJ Web of Conferences (EPJ Web Conf.), 2021
F. Rehm
S. Vallecorsa
Kerstin Borras
D. Krücker
AI4CE
117
8
0
19 May 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via UncertaintiesSciPost Physics (SciPost Phys.), 2021
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
224
62
0
09 Apr 2021
Nanosecond machine learning event classification with boosted decision
  trees in FPGA for high energy physics
Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physicsJournal of Instrumentation (JINST), 2021
Tae Min Hong
B. Carlson
Brandon Eubanks
Stephen Racz
Stephen Roche
J. Stelzer
Daniel C. Stumpp
217
29
0
07 Apr 2021
Graph Generative Models for Fast Detector Simulations in High Energy
  Physics
Graph Generative Models for Fast Detector Simulations in High Energy PhysicsEPJ Web of Conferences (EPJ Web Conf.), 2021
A. Hariri
Darya Dyachkova
Sergei Gleyzer
AI4CE
212
5
0
05 Apr 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELMAI4CE
210
216
0
02 Feb 2021
Quantum Generative Adversarial Networks in a Continuous-Variable
  Architecture to Simulate High Energy Physics Detectors
Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Su Yeon Chang
S. Vallecorsa
E. Combarro
F. Carminati
GANAI4CE
55
14
0
26 Jan 2021
Graph Generative Adversarial Networks for Sparse Data Generation in High
  Energy Physics
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
Raghav Kansal
Javier Mauricio Duarte
B. Orzari
T. Tomei
M. Pierini
M. Touranakou
J. Vlimant
Dimitrios Gunopoulos
GAN
217
24
0
30 Nov 2020
Parameter Estimation using Neural Networks in the Presence of Detector
  Effects
Parameter Estimation using Neural Networks in the Presence of Detector Effects
Anders Andreassen
S. Hsu
Benjamin Nachman
Natchanon Suaysom
Adithya Suresh
359
15
0
07 Oct 2020
Data Augmentation at the LHC through Analysis-specific Fast Simulation
  with Deep Learning
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
Cheng Chen
O. Cerri
Thong Q. Nguyen
J. Vlimant
M. Pierini
98
10
0
05 Oct 2020
DCTRGAN: Improving the Precision of Generative Models with Reweighting
DCTRGAN: Improving the Precision of Generative Models with ReweightingJournal of Instrumentation (JINST), 2020
Yuan-Tang Chou
E. Eren
Gregor Kasieczka
A. Korol
Benjamin Nachman
David Shih
173
48
0
03 Sep 2020
GANplifying Event Samples
GANplifying Event Samples
A. Butter
Yuan-Tang Chou
Gregor Kasieczka
Benjamin Nachman
Tilman Plehn
GAN
311
83
0
14 Aug 2020
Deep Generative Models that Solve PDEs: Distributed Computing for
  Training Large Data-Free Models
Deep Generative Models that Solve PDEs: Distributed Computing for Training Large Data-Free ModelsWorkshop on Machine Learning in High Performance Computing Environments (MLHPC), 2020
Sergio Botelho
Ameya Joshi
Biswajit Khara
Soumik Sarkar
Chinmay Hegde
Santi S. Adavani
Baskar Ganapathysubramanian
AI4CE
127
7
0
24 Jul 2020
70 years of machine learning in geoscience in review
70 years of machine learning in geoscience in review
Jesper Sören Dramsch
VLMAI4CE
297
205
0
16 Jun 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
End-to-end Sinkhorn Autoencoder with Noise GeneratorIEEE Access (IEEE Access), 2020
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
126
28
0
11 Jun 2020
StressGAN: A Generative Deep Learning Model for 2D Stress Distribution
  Prediction
StressGAN: A Generative Deep Learning Model for 2D Stress Distribution PredictionDesign Automation Conference (DAC), 2020
Haoliang Jiang
Zhenguo Nie
Roselyn Yeo
A. Farimani
Levent Burak Kara
GAN
149
24
0
30 May 2020
Deep learning approaches for neural decoding: from CNNs to LSTMs and
  spikes to fMRI
Deep learning approaches for neural decoding: from CNNs to LSTMs and spikes to fMRI
J. Livezey
Joshua I. Glaser
AI4CE
261
11
0
19 May 2020
Designing Accurate Emulators for Scientific Processes using
  Calibration-Driven Deep Models
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep ModelsNature Communications (Nat Commun), 2020
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
227
24
0
05 May 2020
Simulation of electron-proton scattering events by a Feature-Augmented
  and Transformed Generative Adversarial Network (FAT-GAN)
Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN)International Joint Conference on Artificial Intelligence (IJCAI), 2020
Yasir Alanazi
Nobuo Sato
Tianbo Liu
W. Melnitchouk
P. Ambrozewicz
...
E. Pritchard
M. Robertson
R. Strauss
L. Velasco
Yaohang Li
GAN
400
71
0
29 Jan 2020
Anomaly Detection with Density Estimation
Anomaly Detection with Density Estimation
Benjamin Nachman
David Shih
204
238
0
14 Jan 2020
Improved Surrogates in Inertial Confinement Fusion with Manifold and
  Cycle Consistencies
Improved Surrogates in Inertial Confinement Fusion with Manifold and Cycle ConsistenciesProceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Rushil Anirudh
Jayaraman J. Thiagarajan
P. Bremer
B. Spears
AI4CE
100
45
0
17 Dec 2019
How to GAN away Detector Effects
How to GAN away Detector EffectsSciPost Physics (SciPost Phys.), 2019
Marco Bellagente
A. Butter
Gregor Kasieczka
Tilman Plehn
R. Winterhalder
GAN
533
100
0
01 Dec 2019
Response to NITRD, NCO, NSF Request for Information on "Update to the
  2016 National Artificial Intelligence Research and Development Strategic
  Plan"
Response to NITRD, NCO, NSF Request for Information on "Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan"
J. Amundson
J. Annis
Camille Avestruz
D. Bowring
J. Caldeira
...
N. Tran
S. Trivedi
L. Trouille
W. L. K. Wu
C. Bom
161
12
0
05 Nov 2019
Exploring Generative Physics Models with Scientific Priors in Inertial
  Confinement Fusion
Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion
Rushil Anirudh
Kyong Hwan Jin
Shusen Liu
P. Bremer
M. Stuber
PINNAI4CE
68
0
0
03 Oct 2019
Lund jet images from generative and cycle-consistent adversarial
  networks
Lund jet images from generative and cycle-consistent adversarial networks
Stefano Carrazza
F. Dreyer
GAN
114
49
0
03 Sep 2019
Generative Adversarial Networks (GAN) for compact beam source modelling
  in Monte Carlo simulations
Generative Adversarial Networks (GAN) for compact beam source modelling in Monte Carlo simulationsPhysics in Medicine and Biology (PMB), 2019
David Sarrut
N. Krah
J. Létang
GAN
61
30
0
31 Jul 2019
Neural Networks for Full Phase-space Reweighting and Parameter Tuning
Neural Networks for Full Phase-space Reweighting and Parameter Tuning
Anders Andreassen
Benjamin Nachman
221
103
0
18 Jul 2019
Complex-valued neural networks for machine learning on non-stationary
  physical data
Complex-valued neural networks for machine learning on non-stationary physical dataComputational Geosciences (Comput. Geosci.), 2019
Jesper Sören Dramsch
M. Lüthje
Anders Christensen
257
44
0
29 May 2019
Machine Learning Solutions for High Energy Physics: Applications to
  Electromagnetic Shower Generation, Flavor Tagging, and the Search for
  di-Higgs Production
Machine Learning Solutions for High Energy Physics: Applications to Electromagnetic Shower Generation, Flavor Tagging, and the Search for di-Higgs Production
Michela Paganini
129
1
0
12 Mar 2019
Learning representations of irregular particle-detector geometry with
  distance-weighted graph networks
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
S. Qasim
J. Kieseler
Y. Iiyama
M. Pierini
251
146
0
21 Feb 2019
LHC analysis-specific datasets with Generative Adversarial Networks
LHC analysis-specific datasets with Generative Adversarial Networks
B. Hashemi
N. Amin
Kaustuv Datta
D. Olivito
M. Pierini
GAN
152
90
0
16 Jan 2019
Image-based model parameter optimization using Model-Assisted Generative
  Adversarial Networks
Image-based model parameter optimization using Model-Assisted Generative Adversarial Networks
Saúl Alonso-Monsalve
L. Whitehead
GAN
229
35
0
30 Nov 2018
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN3DPC
307
297
0
11 Oct 2018
Machine Learning in High Energy Physics Community White Paper
Machine Learning in High Energy Physics Community White Paper
K. Albertsson
Piero Altoe
D. Anderson
John R. Anderson
Michael Andrews
...
Michael Williams
Wenjing Wu
Stefan Wunsch
Kun Yang
O. Zapata
AI4CE
225
247
0
08 Jul 2018
JUNIPR: a Framework for Unsupervised Machine Learning in Particle
  Physics
JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics
Anders Andreassen
Ilya Feige
Christopher Frye
M. Schwartz
MU
274
143
0
25 Apr 2018
Geometry Score: A Method For Comparing Generative Adversarial Networks
Geometry Score: A Method For Comparing Generative Adversarial Networks
Valentin Khrulkov
Ivan Oseledets
GANMLT
192
132
0
07 Feb 2018
Learning to Classify from Impure Samples with High-Dimensional Data
Learning to Classify from Impure Samples with High-Dimensional Data
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
M. Schwartz
203
78
0
30 Jan 2018
Deep learning for determining a near-optimal topological design without
  any iteration
Deep learning for determining a near-optimal topological design without any iteration
Yonggyun Yu
Taeil Hur
Jaeho Jung
I. Jang
3DV
195
313
0
13 Jan 2018
Automated Design using Neural Networks and Gradient Descent
Automated Design using Neural Networks and Gradient DescentInternational Conference on Learning Representations (ICLR), 2017
O. Hennigh
98
8
0
27 Oct 2017
Neural networks for topology optimization
Neural networks for topology optimization
Ivan Sosnovik
Ivan Oseledets
160
285
0
27 Sep 2017
Pileup Mitigation with Machine Learning (PUMML)
Pileup Mitigation with Machine Learning (PUMML)
Patrick T. Komiske
E. Metodiev
Benjamin Nachman
M. Schwartz
170
104
0
26 Jul 2017
CosmoGAN: creating high-fidelity weak lensing convergence maps using
  Generative Adversarial Networks
CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial NetworksComputational Astrophysics and Cosmology (CAC), 2017
M. Mustafa
Deborah Bard
W. Bhimji
Z. Lukić
Rami Al-Rfou
J. Kratochvil
GAN
491
126
0
07 Jun 2017
Previous
123
Next
Page 2 of 3