ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.02144
  4. Cited By
Covariant Compositional Networks For Learning Graphs

Covariant Compositional Networks For Learning Graphs

7 January 2018
Risi Kondor
H. Son
Horace Pan
Brandon M. Anderson
Shubhendu Trivedi
    GNN
ArXivPDFHTML

Papers citing "Covariant Compositional Networks For Learning Graphs"

43 / 43 papers shown
Title
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Ashwin Samudre
Mircea Petrache
Brian D. Nord
Shubhendu Trivedi
42
2
0
18 Sep 2024
Sampling Foundational Transformer: A Theoretical Perspective
Sampling Foundational Transformer: A Theoretical Perspective
Viet Anh Nguyen
Minh Lenhat
Khoa Nguyen
Duong Duc Hieu
Dao Huu Hung
Truong Son-Hy
42
0
0
11 Aug 2024
DE-HNN: An effective neural model for Circuit Netlist representation
DE-HNN: An effective neural model for Circuit Netlist representation
Zhishang Luo
Truong Son-Hy
Puoya Tabaghi
Donghyeon Koh
Michael Defferrard
Elahe Rezaei
Ryan Carey
William Rhett Davis
Rajeev Jain
Yusu Wang
16
5
0
30 Mar 2024
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
36
23
0
15 Nov 2022
Bispectral Neural Networks
Bispectral Neural Networks
Sophia Sanborn
Christian Shewmake
Bruno A. Olshausen
Christopher Hillar
28
12
0
07 Sep 2022
Graph Neural Network Based Node Deployment for Throughput Enhancement
Graph Neural Network Based Node Deployment for Throughput Enhancement
Yifei Yang
Dongmian Zou
Xiaofan He
13
5
0
19 Aug 2022
Universally Expressive Communication in Multi-Agent Reinforcement
  Learning
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Graph-level Neural Networks: Current Progress and Future Directions
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Jia Wu
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
36
0
0
31 May 2022
Theory of Graph Neural Networks: Representation and Learning
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
A Simple and Universal Rotation Equivariant Point-cloud Network
A Simple and Universal Rotation Equivariant Point-cloud Network
Ben Finkelshtein
Chaim Baskin
Haggai Maron
Nadav Dym
3DPC
24
13
0
02 Mar 2022
Capacity of Group-invariant Linear Readouts from Equivariant
  Representations: How Many Objects can be Linearly Classified Under All
  Possible Views?
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
13
5
0
14 Oct 2021
Equivariant Subgraph Aggregation Networks
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
41
174
0
06 Oct 2021
Nonlinearities in Steerable SO(2)-Equivariant CNNs
Nonlinearities in Steerable SO(2)-Equivariant CNNs
Daniel Franzen
Michael Wand
30
3
0
14 Sep 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
31
60
0
15 Jun 2021
Equivariant Networks for Pixelized Spheres
Equivariant Networks for Pixelized Spheres
Mehran Shakerinava
Siamak Ravanbakhsh
3DPC
23
19
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
19
433
0
02 Jun 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
28
975
0
19 Feb 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Rotation-Invariant Autoencoders for Signals on Spheres
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
16
5
0
08 Dec 2020
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
  Properties
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
19
62
0
26 Sep 2020
Distance Encoding: Design Provably More Powerful Neural Networks for
  Graph Representation Learning
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
17
12
0
31 Aug 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
41
423
0
16 Jun 2020
Global Attention Improves Graph Networks Generalization
Global Attention Improves Graph Networks Generalization
Omri Puny
Heli Ben-Hamu
Y. Lipman
27
22
0
14 Jun 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
22
132
0
20 Feb 2020
Universal Equivariant Multilayer Perceptrons
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
98
48
0
07 Feb 2020
Understanding and mitigating gradient pathologies in physics-informed
  neural networks
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sifan Wang
Yujun Teng
P. Perdikaris
AI4CE
PINN
21
289
0
13 Jan 2020
Deep Learning for Automated Classification and Characterization of
  Amorphous Materials
Deep Learning for Automated Classification and Characterization of Amorphous Materials
K. Swanson
Shubhendu Trivedi
Joshua Lequieu
Kyle Swanson
Risi Kondor
16
37
0
10 Sep 2019
Neural Consciousness Flow
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
19
2
0
30 May 2019
Incidence Networks for Geometric Deep Learning
Incidence Networks for Geometric Deep Learning
Marjan Albooyeh
Daniele Bertolini
Siamak Ravanbakhsh
GNN
13
26
0
27 May 2019
Provably Powerful Graph Networks
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
17
562
0
27 May 2019
Stability and Generalization of Graph Convolutional Neural Networks
Stability and Generalization of Graph Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
MLT
11
153
0
03 May 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
29
402
0
11 Feb 2019
Multi-Dimensional Scaling on Groups
Multi-Dimensional Scaling on Groups
Mark Blumstein
Henry Kvinge
9
3
0
08 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
23
224
0
03 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
151
308
0
05 Nov 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
19
494
0
06 Jul 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
79
3,077
0
04 Jun 2018
Graph Capsule Convolutional Neural Networks
Graph Capsule Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
13
128
0
21 May 2018
3D G-CNNs for Pulmonary Nodule Detection
3D G-CNNs for Pulmonary Nodule Detection
M. Winkels
Taco S. Cohen
MedIm
3DPC
17
107
0
12 Apr 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
20
939
0
22 Feb 2018
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1