Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.06637
Cited By
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
20 January 2018
M. Raissi
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations"
50 / 136 papers shown
Title
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
34
68
0
30 Sep 2021
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
18
77
0
20 Sep 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
30
21
0
26 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
41
193
0
26 Jun 2021
Deep Neural Network Modeling of Unknown Partial Differential Equations in Nodal Space
Zhen Chen
V. Churchill
Kailiang Wu
D. Xiu
AI4CE
14
47
0
07 Jun 2021
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
26
5
0
04 Jun 2021
Invertible Surrogate Models: Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks
Friedrich Bethke
R. Pausch
Patrick Stiller
A. Debus
Michael Bussmann
Nico Hoffmann
27
2
0
01 Jun 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
8
22
0
07 May 2021
Direct Prediction of Steady-State Flow Fields in Meshed Domain with Graph Networks
Lukas Harsch
S. Riedelbauch
AI4CE
59
12
0
06 May 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
24
43
0
06 May 2021
Improved Surrogate Modeling of Fluid Dynamics with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
P. Chiu
M. Dao
PINN
AI4CE
27
4
0
05 May 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
223
0
26 Apr 2021
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation and Optimal Measurement Placement in Power Systems?
A. Afonin
Michael Chertkov
17
3
0
07 Apr 2021
A hybrid inference system for improved curvature estimation in the level-set method using machine learning
Luis Ángel Larios-Cárdenas
Frédéric Gibou
21
6
0
07 Apr 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Transferable Model for Shape Optimization subject to Physical Constraints
Lukas Harsch
Johannes Burgbacher
S. Riedelbauch
AI4CE
24
1
0
19 Mar 2021
Multi-objective discovery of PDE systems using evolutionary approach
M. Maslyaev
A. Hvatov
23
5
0
11 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
30
54
0
25 Feb 2021
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
19
16
0
22 Feb 2021
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems
Laurent Pagnier
Michael Chertkov
42
49
0
12 Feb 2021
A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate
Hongwei Guo
X. Zhuang
Timon Rabczuk
AI4CE
19
433
0
04 Feb 2021
POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
S. Fresca
Andrea Manzoni
AI4CE
21
212
0
28 Jan 2021
Can Transfer Neuroevolution Tractably Solve Your Differential Equations?
Jian Cheng Wong
Abhishek Gupta
Yew-Soon Ong
28
21
0
06 Jan 2021
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
Sebastian K. Mitusch
S. Funke
M. Kuchta
AI4CE
31
93
0
04 Jan 2021
A Physics-Informed Deep Learning Paradigm for Car-Following Models
Zhaobin Mo
Xuan Di
Rongye Shi
PINN
AI4CE
27
131
0
24 Dec 2020
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
A Data Driven Method for Computing Quasipotentials
Bo Lin
Qianxiao Li
W. Ren
16
13
0
13 Dec 2020
A Deep Learning Approach for Predicting Spatiotemporal Dynamics From Sparsely Observed Data
Priyabrata Saha
Saibal Mukhopadhyay
AI4CE
21
4
0
30 Nov 2020
Data-driven Identification of 2D Partial Differential Equations using extracted physical features
Kazem Meidani
A. Farimani
21
17
0
20 Oct 2020
Learning Theory for Inferring Interaction Kernels in Second-Order Interacting Agent Systems
Jason D Miller
Sui Tang
Ming Zhong
Mauro Maggioni
24
18
0
08 Oct 2020
Stochastic analysis of heterogeneous porous material with modified neural architecture search (NAS) based physics-informed neural networks using transfer learning
Hongwei Guo
X. Zhuang
Timon Rabczuk
20
82
0
03 Oct 2020
A Physics-Informed Machine Learning Approach for Solving Heat Transfer Equation in Advanced Manufacturing and Engineering Applications
N. Zobeiry
K. D. Humfeld
AI4CE
15
265
0
28 Sep 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
32
6
0
24 Sep 2020
Bridging the Gap: Machine Learning to Resolve Improperly Modeled Dynamics
Maan Qraitem
D. Kularatne
Eric Forgoston
M. A. Hsieh
AI4CE
28
10
0
23 Aug 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
878
0
28 Jul 2020
Learning Variational Data Assimilation Models and Solvers
Ronan Fablet
Bertrand Chapron
Lucas Drumetz
É. Mémin
O. Pannekoucke
F. Rousseau
6
67
0
25 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
47
2,486
0
17 Jun 2020
A generative adversarial network approach to (ensemble) weather prediction
Alexander Bihlo
AI4Cl
23
77
0
13 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
222
0
10 Jun 2020
Space-time deep neural network approximations for high-dimensional partial differential equations
F. Hornung
Arnulf Jentzen
Diyora Salimova
AI4CE
29
19
0
03 Jun 2020
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
32
51
0
27 May 2020
Sparse Methods for Automatic Relevance Determination
S. Rudy
T. Sapsis
12
16
0
18 May 2020
Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data
Hao Xu
Dongxiao Zhang
Junsheng Zeng
25
57
0
16 May 2020
SciANN: A Keras/Tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
E. Haghighat
R. Juanes
AI4CE
PINN
17
21
0
11 May 2020
Learning reduced systems via deep neural networks with memory
Xiaohang Fu
L. Chang
D. Xiu
11
32
0
20 Mar 2020
Learning to Fly via Deep Model-Based Reinforcement Learning
Philip Becker-Ehmck
Maximilian Karl
Jan Peters
Patrick van der Smagt
SSL
35
37
0
19 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Zhen Chen
Kailiang Wu
D. Xiu
22
3
0
05 Mar 2020
Previous
1
2
3
Next